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ABSTRACT

Pronounced spatial acoustic interference patterns versus horizon-
tal range were observed near the deep ocean bottom from a 220-Hz CW
point source also located near the bottom. This is a result of the

direct water wave field interacting with a strongly reflected field from

the ocean sediments. If the bottom structures are horizontally strat-
ified media, the reflected field can be expressed by the Sommer feld
integral whose integrand is weighted by a total plane wave reflection
coefficient.

In this thesis the reflected fields are analytically evaluated in
order to understand the physical mechanism of the propagating waves
through the bottom layer structure. Based on a canonical geoacoustic
model , the Langer uniform asymptotic approximation is applied to evalu-
ate the total plane wave reflection coefficient accurately. Then the
Sommer feld integral is evaluated by the method of steepest descents.
The expression for the reflected field is fully analytic and provides
physical insight into the understanding of energy partitioning in the
sediments. With inclusion of the new method to analtytically express a
sound velocity profile shape based on measurements, the approximate
solution provides a full analytic expression of the reflected field
based on a realistic geoacoustic model.

Various geoacoustic models, with emphasis on changes in the shape
of the sound velocity profile in the sediment layer, are examined and
their parametric dependences on the associated reflected fields are in-
vestigated. The conditions neccessary for the shape of the profile to
be important are also quantitatively defined and are demonstrated in
theoretical data as well as in real data.
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LIST OF IMPORTANT SYMBOLS : - 1

» e
N
A‘gl)’(z) = -'plew(l)s(z) ‘Z = H) » [ )
(1),(2) -1/2,.(1),(2)
8} = -oe0% 2 (z = 0)
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a, a] Grazing angles in the water column and in the layer at ’ ® ]

the ocean bottom, respectively

cgs €1(z), ¢2  Sound velocities in the water colum, in the layer and
in the basement, respectively

n(z) Phase integral defined by ; Z Q(z') dz' where
Q(z¢) = 0
n0s NH n(z) evaluated at z = 0 and z = H, respectively
g Reference sound velocity gradient in the layer
YQs Y2 Vertical slownesses in the water column and in the
: basement, respectively
H Depth of the subbottom interface
kr Horizontal component of the wave number ! — -:
M Wavelength of acoustic signal within the layer B
m Portion of the ray phase within the layer ]
v(2) = Bun(z)/21%/3 roe
vo* VH v(z) evaluated at z = 0 and 2 = H, respectively |
w Angular frequency of the source . - 1
P Total ocean bottom reflected acoustic field r ... 7
Py Reflected field due to the n-th multiple reflection
p Horizontal slowness (kr = wp) ;
L. e
9
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Ps Horizontal slowness at a saddle point

Psj Horizontal slowness at a saddle point for the j-th
multiple reflection
Pc Ps at caustic
bn Ray phase for the n-th multiple reflection
0(z) Vertical slowness in the layer
QO' QH Q(z) evaluated at z = 0 and z = H, respectively
R{p,w) Total plane wave reflection coefficient off the ocean
bottom
_ Rn(p,w) Partial plane wave reflection coefficient for the n-th
‘ mul tiple reflection
: : Ro1 Local plane wave reflection coefficient off the ocean
bottom for the incident wave in the water column

R12 Local plane wave reflection coefficient off the
subbottom for the incident wave in the layer
r g Horizontal range
PO> P1ls P2 Densities in the water column, in the layer and in the
basement, respectively
-1/2
SU = 00\)0
-1/2
Sh = Qvy
To1 Local plane wave transmission coefficient from the water

column to the layer

T10 Local plane wave transmission coefficient from the layer to
the water column

Valp,w) Plane wave reflection coefficient for the n-th multiple
reflection after the ray phase term is removed

w1 02) () Fock functions defined by [Ai(-x) + iBi (=x)]

Y4 =2+t ZO

zZ, 2g4 Receiver and source heights above the bottom,
respectively

2¢ Turning depth defined by Q(z¢) = 0
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Chapter 1: Introduction

1t has been observed in the deep ocean that the total acoustic
field generated by a harmonic point source placed in the water colum
near the ocean bottom is characterized by strong interference between
the field reflected off the bottom and the direct field through the
water column. The amplitude of this total field thus shows a disti.nct
spatial interference pattern with horizontal range(cf. Fig. 1.1).

This thesis involves the analytic computation of the bottom re-
flected acoustic field using assumed geoacoustic models in order to
uncerstand the mechanism of propagating waves in ocean bottom sedi-
ments. The analytic results obtained here are based on asymptotic ap-
proximations valid in the far field and characterize different types of
rays which contribute to the total reflected field. Therefore, they
provide physical insight into the understanding of energy partitioning
in the sediments.

The methods developed in this thesis will be applied both to the
examination of the fields generated by various ”éanonical" geoacous tic
mocgels and to actual experimental pressure field measurements made by
Frisk and his co-workers‘[sl.z Extensive tests to determine which major
ray paths contribute to the total reflected field will be performed
throughout horizontal range as well as an investigation of the effects

of geoacoustic parameters on such rays.
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Fig. 1.1 A typical pressure field measurement (Ref. 5).
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1.1 Background

1.1.1 Oblique incidence bottom acoustic experiments

A typical experimental configuration by Frisk et. al.[5] 1s shown
in Fig. 1.2. A 220-Hz CW source is suspended on the traw! wire of the
ship which slowly arifts away from a receiving system that consists of
two receivers moored on the bottom, The source is maintained at about
100-200 m above the bottom as it moves away from the receivers out to a
horizontal range of a few kilometers. By sampling the incoming signals
at a sufficient rate, Frisk obtains spatially continuous acoustic fields
near the bottom due to the time harmonic point source which is also
placed near the bottom.

Since the source and receiver are placed relatively close to the
bottom in the experiments as shown in Fig. 1.2, except at relatively
short ranges, most of the rays interact at small grazing angles with the
sediment layer with increasing sound velocity(cf. Fig. 1.3). This is
not the case if the source and/or receiver are placed at a high eleva-
tion above the bottom, for example if both are at the surface or if the
source is at the surface and the receiver at the bottom as done in more
conventional deep-sea seismic experiments for ranges up to a few kilo-
meters(cf. Fig. 1.4).

Spudich and Helmberger[11] computed the seismic responses of simi-
lar ocean bottom models covered by a 4-km thick water colum in a fre-
quency band of 1-30 Hz for both source and receiver located near the
ocean surface. Step-function source responses were computed over the

range of 2-20 km with the increment of 1 km. In their computation they

13
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Fig. 1.2 A schematic of the experimental configuration (Ref. 5).

14

- e et

e




-2007

DISTANCE FROM BOTTOM (M)

Fig. 1.3

(o]
]

~100 e

[} "
(]
o, A

NV \ /M/
i ';”0"0%"
N Q.Q‘r 7
",0 (X //

M o T T
0 1000 2000 3000 4000

RANGE (M)

A ray diagram for the case where the source and receiver are

placed near the ocean bottom.

15

e




-3000-

-2000

1

IRNAAAAANI

=1000

DISTANCE FROM BOTTOM (m)

Latadadatatatatd g

oyt

1000 2000 3000 4000
RANGE (m)

Fig. 1.4 A ray diagram for the case where the source and receiver are
placed at the surface of the 4000 m-deep ocean.

16




applied the generalized ray theory[l] to major ray paths excluding any
internal multiple reflections and absorption in the sediment layers, and
concluded that the sediment layer gradient and its thickness were insig-
nificant to the seismic responses. A major source of the effects they
studied was the basement structure under the sediment layers. In these
cases the rays interact with the sediments at steep angles and are
therefore relatively insensitive to the details of the sediment velocity
profile.

Because of these contrasting bottom acoustic interactions due to
the different relative locations of the source and receiver with respect
to the bottom as shown in Figs. 1.3 and 1.4, we shall not be concerned
with geoacoustic models with mul ti-layered structures, but instead shall
concentrate on the detailed profile shapes of a single layer. Also, for
higher freqbencies used in Frisk's experiments, the effect of absorption
in the sediment layers now become more important, and the number of
major ray paths may be greater for the close range fields where, for ex-
ample, the effects of multiples may not be negligible.

Vidmar[13] and R. Chapman[3] have reported that for typical ocean
bottom structures there is a minor energy-loss mechanism due to the pre-
sence of shear waves in the bottom for near grazing incidence. Also, in
our experience with real data analysis, there has been success with geo-
acoustic models that exclude shear waves[5], and we shall therefore not

include shear in our geoacoustic models.

17
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1.1.1 Sommer feld Integral and geoacoustic models of the bottom

For harmonic time dependence(e‘i“t), the reflected spatial part
of the acoustic pressure field P in a homogeneous medium due to a point
source placed in that medium, which 1ies over a second horizontally

strati fied meaium can be expressed by the Sommerfeld integralll,2]

(8]
P - lgfn{)”(upr) B Ripuo) expliovglzg* 2) dp (1.1)
-

where p = horizontal slowness (ray parameter)
2,5, z2 = source and receiver heights above the boundary
r = horizontal range
R(p,w) = plane wave reflection coefficient
Yo = vertical slowness in the source-receiver medium
H((,l) = the zero-th order Hankel function of the first kind

w = angular frequency of the source

Given the small sound velocity gradient in the water column in the
deep ocean (typically less than .016 s'l[lo]), it is reasonable to
assume that the water column is homogeneous, especially for experiments
which involve small source and receiver heights. In many abyssal plain
regions, one may also assume that the ocean bottom is horizontally
strati fied. In such cases, Eq. (1.1) is a valid expression for the
bottom reflectea acoustic fields.

The plane wave reflection coefficient R, which is the weighting

factor in the integrand of the Sommerfeld integral, contains all of the

18
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acoustic properties of the bottom as well as satisfying the boundary
condition at the ocean bottom interface. The physical and mathematical
complexity of R depends on the detailed geoacoustic properties of the
bottom structure.

In order to obtain analytic solutions for P in Eq. (1.1), we must
consider reasonably simple geocacoustic models. Yet such models must be
realistic enough to generate fields which compare favorably to real
cata. Macpherson and Frisk[5] have obtained analytic expressions for
the total field using the method‘of normal modes, but their geoacoustic
model was a slab configuration, a homogeneous layer between two homo-
yeneous hal fspaces., Using a modified uniform asymptotic method,
Stickler and Ahluwalia[1l2] obtained analytic solutions based on a more
realistic model containing a layer with a 1/c2-1inear‘ profile between
two homogen'eous hal fspaces. However, the sound velocities were required
to be continuous at the layer boundaries, i.e. no discontinuities were
allowed. In both cases, the geoacoustic models used as input to them
lack some realistic features necessary to discuss real data. A more
compl ete geoacoustic model should contain an inhomogeneous layer with a
m&otmically increasing sound velocity profile bounded by homogeneous

hal fspaces with arbitrary boundary conditions as shown in Fig. 1.5.

1.2 Asymptotic approximation of the Sommerfeld integral

Our goal is to evaluate the Sommerfeld integral analytically. This
involves two steps. The first step is to obtain the reflection coeffi-
cient R based on our geoacoustic models and the second is to evaluate

the integral. 1In order to obtain R, we riust evaluate the field inside

19
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the layer. Provided that the sound velocity within the layer monotonic-
ally increases with depth, we can apply the Langer uniform asymptotic
approximation(L.U.A.A. )[7, 8] to compute the field. The method has been
applied by Cormier and Richards[4], and Kennett and I1lingworth[6] in
numerical seismic synthesis. The advantage of the L.U.A.A. is that,
unlike the W.K.B.J. method, it is uniformly valid for any horizontal
slowness (or equivalently horizontal component of the wave number) in a
given medium for any profile shape as long as the sound velocity mono-
tonically increases. Once the field inside the layer is obtained analy-
tically, the analytic expression for the reflection coefficient R can be
founa easily from the boundary conditions,

It is of interest to understand the energy partitioning of pro-
pagating acoustic waves associated with various ray types as a function
of horizontal range. In order to do this, we shall expand the total
reflection coefficient in a series of partial reflection coefficients
which have a straightforward physical ray-phase interpretation. Having
aone this, we shall evaluate the resulting series of Sommerfeld inte-
grals by the method of steepest descents. The results are more accurate
than that of ray theory and provide reflected fields readily associated
with different ray types.

1.3 Overview
Chapter 2 focuses on the mathematical details of the analytic
evaluation of the field in the layer using the L.U.A.A. Satisfying the

bounaary conditions, the total plane wave reflection coefficient will be

- then evaluated. Finally, the Sommerfeld integral will be evaluated us-

21
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iny the method of steepest descents. The accuracy of these methods is
also demonstrated by comparison with numerical results. Two types of
inter face waves, one along the ocean bottom interface and the other
along the subbottom interface, are also discussed. An equation for the
inter face wave along the subbottom for the n-th multiple reflection is
derived.
In Chapter 3, using the mathematical tools developed in Chapter

2, we examine a wide range of geoacoustic models by parametrically vary-
iny the layer thickness and other geoacoustic parameters, as well as the
source-recejver geometry. We shall also discuss a simple but accurate
analytic expression for the sound velocity profile, given in the formof
c3-linear in depth, based on measurements in order to make our geo-
acoustic models more realistic..

Chaptér 4 is devoted to the discussion of caustics due to three

di fferent canonical profile shapes, the 1/c2, ¢ and c3

-1inear pro-
files. Caustic equations are derived for these profile shapes. It is
shown that the top portion of the sound velocity profile in the layer is
most critical for caustic formation based upon our geoacoustic models.
The fields near the caustics are also derived and examined for these
profile shapes. It will be shown that the amplitude variation of the
fields near the caustic solely depends on the curvature of the caustic.
Finally, in Chapter 5, real data collected from field experiments
will be analyzed using the technique developed in Chapter 2 and dis-
cussed using the knowledge obtained from the model studies in Chapter

3. It will be demonstrated that the recovery of geoacoustic parameters

from measurements has a strong connection to the geometric orientation

22
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of source and receiver.
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CHAPTER 2: Mathematical Formulation )

Analytic solutions to the problem we have described in Chapter 1

will be discussed in great detail in this Chapter. Our mathematical
treatment for the evaluation of the Sommerfeld integral given by Eq.
(1.1) is based on asymptotic expansion techniques which assume that the
receiver is many wavelengths away from the source.

b Our asymptotic approximation to the reflected fields is twofold.
The first step is to compute the total reflection coefficient, which is

i the weighting factor inside the Sommerfeld integral, by using Langer

uniform asymptotic approximations. The results are accurate and yet the
analytic solutions are general enough to treat various typical geoacous-
tic mocels. The second-step asymptotic approximation is to evaluate the
Sommer feld inteyral by the method of steepest descents with the re-
flection coefficients already evaluated. The final solutions for the
reflected fields are completely analytic and are functions of the geo-

acoustic parameters and source-receiver geometries.

2.1 Computation of the Total Reflection Coefficient Using the Langer

Uniform Asymptotic Approximation

LA
The total reflection coefficient for the proposed geoacoustic ’T
model shown in Fig., 1.5 will be given after general solutions to the o '1
acoustic velocity potential in the sediment layer are evaluated using o i
e —

the Langer uniform asymptotic approximation (L.U.A.A.)(10]. Then it

will be shown that the resulting closed form of the total reflection
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coefficient may be reduced to ray theory results for certain regions of
incigent angles where ray theory is valid. This total reflection coef-
ficient based on the L.U.A.A. will be compared to a numerical result

generated by the Thomson-Haskell propagator-matrix method(1].

2.1.1 General Solutions

We will refer to the water column, the layer and the basement as
medium 0, 1 and 2 respectively. First we consider the general solutions
in medium 1. The acoustic time dependent velocity potential W(x,y,z,t)

satisfies the the following inhomogeneous wave equation

After the harmonic time dependence LT assumed, W(r,z,t) can be

written as

Wir,z,t) = d(r,z) g-lut

After the horizontal terms are separated from P(r,z), we are left with
the z-dependent potential F1 (z) which satisfies the onedimensional

Helmhol tz equation,

2
d“fF.(z)

1 uzoz(z) Fl(z) =0 (2.1)
az

where w = angular frequency (rad/s)
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ana 04z) = 1 — - p%. (2.2)
¢ (2)

Here ¢, (z) is the sound velocity profile in the medium 1 as a function

of depth and p is the horizontal slowness or ray parameter. The hori-

zontal wave number kr can be given in terms of p as kr = wp and the

vertical wave nunber kz as kz = uwQ.

Solving for F(z) analytically for a given G (z) is in general
very difficult except for a few examples[5]. A more desirable solution,
which does not have to be exact, but rather flexible in dealing with
varjous acoustic properties in ocean bottom, may be found in a form of
asymptotic approximation. We will now consider the following differen-

tial equation:

fdf-(zil + uZ[QZ(z) - E(z)] G(z) =0 (2.3)
where E(z) is given by
E(z) =-\;—" oy gl? (2.4)

Here n is known as the phase integral and is given by

¥ 4

nz) = fQ(z') dz' (2.5)

Z¢

where Zy is the turning depth defined by the condition,
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1 241/2
Q(Zt) = [7—— - P ] =0 (2.6)
Cl(zt)
In general, when absorption is included in the sound velocity pro- " e

file, < (z) is a complex function. Thus, z, my be a complex
number[6]. The phase integral in the complex z-plane can be evaluated
along a contour such as one shown in Fig. 2.1. The branch cut due to T e
the radical Q is present where the imaginary part of Q is zero. Since
the contour always originates at the branch point zy, there is no
branch cut contribution involved and the integration is quite straight- , A ®
forward.

The basic argument of the L.U.A.A. is that if E(z) approaches zero
as w/[dc(z)/dz] becomes very large for any given p, then G(z) asymptoti- Y
cally approaches the desired solution F(z). Indeed it is possible to

obtain such an E(z) as long as the following conditions are satisfied:

. o
1. There is only one first-order turning point for a given p in
the profile. A first-order turning point is defined as one
for which Q(z,) = 0, but Q'(zt) # 0. Here the prime - . |
denotes the derivative with respect to z. |
2. The profile cl(z) must be smooth [i.e. the condition given
by EqG. (A.7)] near the turning point. Since this condition _ o
must be met for any p and associated z,, ¢ (z) must be
smooth everywhere.
- .9
In brief, cl(z) must be a smooth, monotonically increasing func-
tion. The acoustic properties within a layered structure of the ocean
_— .
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Fig. 2.1

Re z

\ 7
~ 4

The complex z-plane with a integration contour to evaluate
the phase integral n. The branch point is located at z =

Z¢.
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bottom typically satisfy these conditions.

The exact solutions of Eq. (2.3)[9] are given by

6,(2) = Y24 piow) (2.7a)
6,02) = Y24 Bi(oy) (2.7b)

where v 5[—% un(Z)]2/3 (2.8)

J Therefore, the z-component of the field in the layer for the given

p becomes asymptotically

Fylz) - 0‘1’2\,1/4[31Ai(-v) +B,BI(-W)] asu> o  (29)

The error analysis of the L.U.A.A, is discussed in Appendix A,
Since medium 0 is assumed to be homogeneous, the z-component of
the general solutions for the velocity potential can be easily obtained

ana is given by

Fo(2) = A, eTo? + p, &”1970? (2.10)
1 2.1/2
where Yo = (= - p9) (2.11)
c
0
Similarly, in medium 2 N
-9 =
~fuy,2 P
FZ(Z) = Cl e 2 (2.12) 1
o ]
- =
30
- L ]

i ek




where Y, = (—1-2 - pz)l/2

@

(2.13)

Note that there is only one term in Eq. (2.12) in order to satisfy the
radiation condition. Al, AZ' Bl’ B2 and C1 are arbitrary constant co-
efficients for a given p and remain to be found from appropriate bounda-
ry conditions, which will be discussed shortly. After multiplication by
the horizontal component, the potential is given by

Cbi(r, 2) = F,-(z) ei“""; i=0,1, 2 (2.14)

in the i-th medium for a given p.

2.1.2 Bounaary Conditions

Since the pressure and vertical component of the motion of the
particles must be continuous across the boundaries, 914’1 and d%/dz mus t
be equal at the interfaces in order to satisfy these conditions respec-

tively. Thus we can obtain the following equations:

At z = 0 (the ocean bottom)
po(A1 + A2) = ol[BIGl(O) + BZGZ(O)] (2.15)
At z = H (the subbottom)
p (B, Gy (H) * B,G (H)] = pzcle""”zH (2.17)
31
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B,GI(H) + B,GI(H) = - 1Cjuy, e-iuvH (2.18)
where 6 (2) = Y2, V% () (2.19a)
6y(2) = Q2,1 %;(.y) (2.19b)

Solving for A, assuming a unit amplitude in the incident wave (A2 = 1),

1
we finally obtain the total reflection coefficient for this geoacoustic

ocean bottom model,

(2) g2y (a1} _g(1)y ({1 _ (1)) (2 _4(2)
(ag? -8y agt - et - gt -ath ag® -8

(K2 42y D gDy (WD 4 gl 42 (2,
where Al 2y w1 (2 7 ) : (2.21a,b)
B(()1),(2) . _pooov(-)l/Z w1020 o gy (2.22a,b)
A'gl),(Z) = .'plyzw(l)a(z) ‘Z = H) (2.23a,b)
BLI)’(Z) = -DZQHV}JI/ZN'(I)’(Z) (z = H) (2.24a ,b)
wi th Qo = Q‘Z:O), QH = Q(Z:H)
vy = v(z=0), Vy = v(z=H)
w2 () 2 Af(-v) ¥ iBi(-v) (2.25a,b)
w2 )y oo (GMLy) 3 dBiL), (2.26a,b)
- 8.
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Here W 12(2) are known as Fock functions[9]. The solutions may be
given in terms of Hankel functions of the 1/3rd order. However, the
aavantage of using Fock functions is that because they are 1inear com-
binations of Airy functions, it is easier to evaluate them numerically
than Hankel functions. In addition, similar to Hankel functions, their
asymptotic expansions (see Appendix C) behave 1ike propagating plane
waves. In general, N(l) and N(Z) are not complex conjugates of one
another since v as well as Ai anq Bi may be complex nunbers.

This asymptotic approximation of the total plane wave reflection
coefficient given by Eq. (2.20) is valid for any shape of the sound
velocity profile in the sediment layer as long as it is a slowly and
monotonically increasing profile. Not only these conditions are met in
yeoacoustic mooeling of a typical ocean bottom, but also this new plane
wave reflection coefficient allows us to do more detailed geoacoustic
model ing by providing some freedom in the choice of profile shapes. The
total plane wave reflection coefficient based on this formulation is
compared to the numerical result{13] generated by the Thomson-Haskell
Propagator-Matrix method[l] for a typical case of interest (cf. Fig.
2.2) for a frequency of 220 Hz. As shown in Fig. 2.3, their agreement

is so good that one may not distinguish one from the other.
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. Co = 1500 m/s
I Po= 1 g/cm3
OCEAN
BOTTOM
I c,{(z) = -z2+1485m/s
100 m
l P1=1.5g/cm?
SuBBOTTOM
Co= 1800 m/s

P2=1.8g/cm3

Fig. 2.2 A typical geoacoustic model. A frequency of 220 Hz is used.
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2.2 Physical Properties of Reflection Coefficients

2.2.1 Expansion of the Total Reflection Coefficient

In this section, the total reflection coefficient obtained using
the L.U.A.A. will be decomposed into an infinite sum of partial reflec-
tion coefficients. It will be shown that each term represents its own
unique physical property analogous to ray theory for special cases where
the turning depths are away from both of the interfaces.

The procedure of the expansion is analogous to a ray expansion[11]
which decomposes the total reflection coefficient into an infinite sum
of reflection coefficients: First, we divide the numerator and denomi-

nator of Eq. (2.20) by
(2) (2)y,,(1) (1)
(Ao + Bo )(I\H - BH )

to obtain

(2) (2) (1) (1), (2) (2)
o) - {Ao o I R L )}
Y IICBTY RIS O

-1

(1) , o(1),,,(2) .(2)
(art) it yalé) _gledy
x[1 .9 0 H H ] (2.27)

(2) L g2l a (1] (1),

Second, we perform a binomial expansion of the second bracket.
This process may be justified by introducing a small positive imaginary

part in cl(z) which makes the absolute value of the second term always
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smaller than unity, and letting the imaginary part go to zero after the

expan- sion, After a few more steps, R(p) becomes

©
R(p) = R +z R, (2.28)
n=1
where
NCINC
R. = (2.29)
0 ASZ’ . 352)

, -1/2 (2) (2)
400°179%"0 Ay~ - By

R =
n (2), o(2)y2 (1) (1)
T (Ao + BO ) AH - BH

(1), ol1)y ()  q(2), 01
x[(Ao BO )(AH -BH ):l

A1) A2)y . (1) (1)
(AO +BO )(AH -BH )

(2.30)

In order to obtain a physical interpretation of each term, we sub-
stitute the asymptotic forms of the Airy functions. The conditions for
which the Airy functions may be expanded are equivalent to the condition
that the turning depth for a given horizontal slowness p is many wave-
lengths away from ei ther boundary. The first term, R0 can then be re-

auced to

P17 ~ 2%
p1vg * Pl

Ry (2.31)

This is simply the Rayleigh plane wave reflection coefficient in medium 0
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over the homogeneous hal f space which is characterized by ¢ (z=0) and
Py This is the plane wave reflection coefficient one would expect to
abtain for the specularly reflected ray using ray theory. Similarly,

for large v, R1 can be reduced to

T..T. R, e (ng-ny) z

01710R12 g <H
Ry - (2.32)
2iun, - 17/2 0>z, >H
TOlTloe 0 t

where TOl’ T and R12 are local plane wave transmission coefficients
and reflection coefficient across the medium 0 to 1, 1 to 0 and1 to 2,
respectively. This is the result one would obtain from ray theory for a
ray which reflects off the subbottom or turns within the layer once, de-
pending on the location of the turning depth. Notice the -x/2-phase
shift associated with the refracted ray, a term which is often introduc-
ed as a correction in pure ray theory. In exactly the same manner Rn

can be reduced to the following asymptotic form for n > 1.

2iu{ny - ny)n-1
Rl[RloRlz e 0 H'] z, <H

R, - (2.33)

RIER eZ‘iuno - ‘i'rr/z]n-l

0>z, >H

10 t

where R's and T's with two integer subscripts are Tocal plane wave re-
flection and transmission coefficients at the interface indicated by
their subscripts. From the phase in Eq. (2.33), it suggests that Rn
behaves asymptotically in n 1ike the n-th multiple which reflects or re-

fracts n times in the layer. R1 is a special case of Rn with n = 1.
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Because of the physical interpretation obtained by using the asymptotic
approximation, we may call Ro, R1 and R the specular, the primary and
the n-th multiple, respectively. The schematics of their physical prop-
erties are shown in Fig. 2.4.

We note that while reflection coefficients based on ray theory
fail when the turning depth is very close to either interface, these new
reflection coefficients based on the L.U.A.A. are uniformly valid for
all values of p regardless of the locations of the corresponding turning
eepths. This is one of the most powerful features of the Langer reflec-

tion coefficients.

2.2.2 Comparison with Ray Theory Results

Interesting features of the Langer reflection coefficients as
compared to reflection coefficients based on ray theory will be dis-
cussed next. In Figs., 2.5-2.7, the specular, primary and second mul ti-
ple Langer reflection coefficients are compared to the ray theory re-
sults for a geocacoustic model shown in Fig. 2.2 at a frequency of 220 Hz.

Because of the small sound velocity drop at the ocean bottom, we
observe a minimum amplitude in the specular reflection(cf. Fig. 2.5a) at
a particular incident angle. According to ray theory we would expect
the specular reflection coefficient to be zero at this angle(cf. Fig.
2.5b), which is the Brewster angle (angle of intromission) associated
with two homogeneous media where the upper half-space has the properties
P and ¢y, ana the lTower half-space has the properties Pl > P and
¢j{z =0) <cy (4]. However, the specular reflection coefficient does

not become identically zero according to the L.U.A.A., but only becomes a
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Fig. 2.4 Typical reflecting rays in the bottom.
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Fig. 2.5 The specular reflection coefficient. A comparison between
(a)the L. U. A. A. and (b)ray theory for the model shown in
Fig. 2.2. The frequency is 220 Hz.

41

PP




|® e “o ™ e ® o ®
| _ . i , _ _ | S
]
1
£ A
=
T
ISVHJ k= 82
) v v
0
P o mm
rw | © .me
@ m.m
o
—_ - O«
m M.uv. v.n/v o A.m
)
Ouuu\ Ol.n\u .nv.. .
©w " © r
— - <8g
22 A T 2N g
Y g
<t - ﬁ4T C/lw
Z Z c O c
OE OE ...OIMW
o 0 f3D ﬂ .3
QE Lo Z v< o
> J
.o -2 5 . .
y E
o . R g
o X o M
=3T ]
JAN1INOVIN JANLINOVIN “
IN3IDI44302 NOI1D3143H LN3IOI4430D NOILD3 143 . .
on
- d
[T




—— Y- - - . . ) : |

- —r— 1111\.4 ——— e T ‘ﬂ - iy e e Ty -

b
® | @ N . ® ’ @
: ! i
' !

v —
! : 5§38
| 23
3 5w
mm
o
P <&
| . D
@ M %H 1
-5
o — —_ O~
-~ O [o)] ﬁ .ﬂos 4
o2 z SLy
a © w w m..u m :
- -l Le3s ™
oV O - "°g =
0z Zz <& ]
o< < T .o
A= - LEE
1 rN—.q._ :N._ v
e &) 2w
] O O uuu. o™
m |N_l cmeceans —rreee—d o~ m mm-mcu b
———n TR AL Py .M l.-d\ [V
© L eesmmemmemmmTT - © w ﬂ.m
- BUPTY Tk a D LT LR TR P Toinzrzee . “ “ c
R 033
o — V——— v — —r— o =3 ' 4
o
~
o~
JANLINOVIA JANLINOVIN )
LN3I12144302 NOI1123143H LN3I1214430D2 NOI1D3143H o
(7,




minimum. This is due to the fact that the positive sound velocity
graaient in the sediment layer prohibits total wave energy transmission
even at the Brewster angle., This discrepancy is also observed in the
plane wave reflection coefficients for the multiples(cf. Fig., 2.7).

Another interesting feature of the Langer reflection coefficients
can be seen for the geoacoustic model shown in Fig. 2.8. Here the sound
velocity is continuous at the water-bottom interface, but there is still
a velocity graaient in the bottom and the densities in both media are
the same. Ray theory predicts no specular reflection or multiple re-
flections associated with the water-bottom interface because there is no
acoustic impedance discontinuity exists across that interface.

However, according to the Langer reflection coefficients, as shown
in Fig. 2.9, one may still obtain non-zero reflection coefficients near
grazing inc.i dence, These unexpected results may be explained by the
fact that the Langer reflection coefficients take into account not only
the discontinuity in the acoustic impedance but also the discontinuity
in the derivative of the acoustic impedance with respect to z. This is
another example where the Langer reflection coefficients demonstrate
their improved accuracy over ray theory based reflection coefficients

for a stratified slowly varying medium.

2.3 Asymptotic Expansion of the Sommerfeld Integral by the Method of
Steepest Descents

Our goal is to compute the reflected fields due to a harmonic
point source, namely to obtain the leading order asymptotic behavior of
the Sonmerfeld integral, Eq. (1.1), by means of asymptotic approxima-
tion, So far we have found the closed form of R(p) in Eq. (1.1) for our
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Fig. 2.8

Geoacoustic model with a interface where there are no discon-
tinuities in sound velocity and density.
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Fig. 2.9
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The specular reflection coefficient for the geoacoustic model
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shown in Fig. 2.8. for the frequency of 220 Hz.
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geoacoustic models, and further how to break up R(p) into an infinite
number of terms each of which has a physical interpretation in terms of
ray theory.

After substituting Eq. (2.28) in Eq. (1.1), we obtain a series of
Sommer feld integrals each of which contains Rn‘ An asymptotic form of
each Sommerfela integral can provide us an analytic expression for the
reflected field as a function of horizontal range coupled with the phys-
ical properties of R, associated with the integrand. While the co-
herent sum of these asymptotic forms of the integrals provides the total
reflected field, we can also evaluate how the individual reflected
fielas contribute to the total reflected field along horizontal range
for various sets of geoacoustic parameters and source-receiver geometri-
es.

Thus ,-after the Hankel function is replaced with its asymptotic

form,

1/72 ; .
H(()l)(upr) ~ (——w;) glopr - in/4, wpr >> 1,

our problem is to evaluate

w

P = z P,
n=0
in/4 © 1/21'[(z+z)+ rl]
where Py =Jg?e " fRn Y—E elWlyglZizgl * P14y (2.34)
- 0

®

from which we obtain the reflected field representing the physical prop-
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erty that Rn carries.

2.3.1 Mathematical Treatment before the Method of Steepest
Descents is Applied

Fig. (2.10) shows the complex p-plane with branch points at p =
1/c0 and 1/c2. (Only the l/co-brand1 point is present for P0 contain-
ing RO.) The branch cuts, known as the E.J.P. cuts[8], satisfy the
conai tion that the imaginary parts of the radicals, p, o and v, are
zero, Notice that they are the only radicals that we must be concern-
ed with in the process of deforming the integration contour to eval-
uate Eq. (2.34) even after the expansion of the total reflection coef-
ficient. Unlike a slab configuration of homogeneous media[10], i.e. a
homogeneous layer between two different homogeneous hal f spaces, we do
not create additional branch points as a result of the ray expansion of
the total reflection coefficient. Q0 and QH may appear as radicals in

-1/2 there is no ambiguity in sign.

Rn at first glance but with v
We shall apply the method of the steepest descents[2] to eval-

uate Pn' In order to do so we must rewrite Pn in the form of

®

I, =f Fa(p) elupy(p) dp; wr > (2.35)
-

where F(p) must be a slowly varying function of p, compared to the com-

plex exponential term in order for the method to be valid. When n £ 0,
this would not be the case if we made the direct substitutions

1/2
Fn(p) = Rn-%—

B,(p) = volztzg) + pr
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Fig. 2.10 The complex p-plane with the branch cuts.
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because Rn is in general a very fast oscillatory function (See Fig.
2.6 or Fiy. 2.7 for example). In order to convert Eq. (2.34) into the
form of Eq. (2.35) satisfying the above requirement, the following sub-

stitutions are sugges ted:

v, 172
Fo(p) « =2 — (2.36)
Y0
Ba(P) = vg(z * z5) +pr + 2ny (2.37)
where
V=R e-2iuMu (2.38)
n n
- 0
f Qfz') dz' 0>z >H (2.39a)
Zy
with u = 0
f az') dz' zy < H (2.39b)
.
H

in which the phase term of Rn is estimated from the asymptotic behav-
jor of Rys which is identical to the ray phase, then separated from

R, and added to the complex exponential term in the integrand. Fig.
2.11 shwws V, vs. incident angle for the primary reflection coeffi-
cient of the geocacoustic model shown in Fig, 2.2. Compared to Fig. 2.6,
the phase curve has been significantly stabilized. The only appreciable
phase variation occurs between critical incidence and the angle at which

the ray completely turns in the layer. Since Vn approaches Rn as u
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Fig. 2.11 The primary reflection coefficient for the model shown in
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51




becomes very small{cf. Eq. (2.38)], the substitutions given by Eq.

(2.36) through Eq. (2.38) are valid even when nuy is not large.

2.3.2 Evaluation of P, by the Modified Method of
Steepest Descents - Saddle Point Contribution

Strictly speaking, a direct application of the method of steepest
descents to the Sommerfeld integral with the Langer reflection coeffi-
cient, which is a function of p and uw, is not valid. However, by ex-
cluding the second derivative of Vi in the expansion, we may still
apply the basic technique to obtain analytic solutions to the Sommerfeld
integral whose accuracy is improved over the results obtained by ray
theory. The detailed derivations and justifications are discussed in
Appendix B, ana here we only introduce the necessary formulation to
obtain the asymptotic solution to the Sommerfeld integral of the n-th
term.

First, we must fina a saddle point Pg which satisfies

p
g (ps)=-;-sa(z+zo)+r+2nu'(ps) = 0 (2.40)

This is equivalent to locating an eigenray connecting two fixed points.
In some cases, there could be well separated multiple saddle points (but
not a caustic), found for the same source-receiver geometry.

Second, we deform the integration contour passing through the sad-
ale point(s) along which the real part of 6 is constant and the imagi-
nary part is positive, Such a deformed contour is shown in Fig. 2.l2.
As a result, the complex exponential term now becomes a decaying term

alony this deformed contour with a maximum at the saddle point. There-
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fore, if the amplitude of the integrand is a well behaved function, the
integration may be approximated by integrating through a small domain
near the saddle point (marked with ")(" in Fig. 2.12), and the rest of
the contribution asymptotically becomes zero.

Next we expand the integrand in a Taylor expansion in p about P>

and Eq. (2.35) becomes

©
J[ dp [F (p) + F' (p)(p - pg) * 1
-

n 2
F' (Pg) (P - Pg) ]

<
n

X expiollp, + — 4100 - pe)?r B (P - P+ 2 g 0 - pg) Y (24

ana the asymptotic expansion of Eq. (2.34) due to the saddle point Pns

up to the second order term becomes[2]

P - e/ / L elulvglerzg) * Pgr]

P 1/2
-1 1
X -ia-vrr-‘-rp—s) R (p ) 0 [1 + . N] (2.42)
m ] Iv Ill2 "
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where for n =
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where

(1), (2)"_

A

(1),(2)'
BO =

(1),(2)
AH =

(1),(2)
BH =

where

and summed.

complex sound velocities to include absorption.

(2.41) is the contribution from a-single saddle point.
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(2.51a,b)

(2.52a,b)

(2.53a,b)

(2.54a,b)

(2.55a)

(2.55b)

The above formula, Eqs. (2.41) through (2.55), are also valid for
In this case, a complex
saadle point must be found from Eq. (2.40) where the phase integral , is
evaluated for a complex turning depth Z,. We also point out that Eq.

Thus, if more

than a single saddle point exists, their contributions must be evaluated

If Nis set equal to zero[cf. Eq. (2.42)], the result becomes a
ray solution except Rn is more accurately evaluated by the L.U.A.A.
It is necessary to include the correction term N in order to be con-

sistent with the order of accuracy provided by the Langer formulation
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Fig. 2.12 The steepest descents path in the complex p-plane for a pre-
-critical incidence. o
L9
— 8
56
v LI




" ————"
. AN
. PR S

which is valid up to order 1/u (See Appendix A). However, using the
same argument, evaluation of higher order terms in Eq. (2.42) or more
accurate integration of Eq. (2.34) by a numerical method would not in-

crease the accuracy of the result given by Eq. (2.42).

2.3.3 Interface Waves

Dealing with two different types of interfaces in our geoacoustic
models, we consider two physically and mathematically di fferent types of
inter face waves; one propagates along the ocean bottom interface where
the medium containing the incident wave is homogeneous and overlies an
inhomogeneous hal fspace, while the other propagates along the ocean sub-
bottom where the medium containing the incident wave is inhomogeneous
ana overlies a homogeneous halfspace.

The first type of interface waves, known as an interference head
wave, has been extensively studied by Cerveny and Ravindra[5]. It is
the result of a coherent sum of many mul tiples which have closely lo-
catea shallow turning depths (cf. Fig. 2.13).

By definition[7], the interference head wave propagates along the
inter face sdch that the upper halfspace is homogeneous with the sound
velocity ¢ and the lower halfspace has the acoustic property as
cl(z) =a * bz where a » o andb, z > 0. However, unless a limit-
ing case where b approaches 0 in ¢, (z) is considered, the mathematical
arguments are identical for the case where cl(o) is greater or less
than o and both are the contributions from the multiples.

We have observed that there are no additional branch points cre-

ated as the result of the expansion of the total reflection coeffi-
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Fig. 2.13 Rays of multiples which turn at relatively shallow depths in
the layer.
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cient. Thus, unlike head waves from the branch cut contribution[4] for
two homogeneous halfspaces, the interference head waves are special
cases of the saddle point contributions to the total reflected field.
Therefore, the ampl itudes of the interference head waves are proportion-
al to the reciprocal of the range, not the range squared.

The presence of the second type of interface wave is due to the

branch cut contribution as the S.D.P. crosses the branch point at p =

1/c2 {but never at p = 1/c0), and the contour must be deformed to go

v SRS
PRI

i arouna this branch cut so that the end points of the integration path
- may remain on the correct Riemann sheet(cf. Fig. 2.14). The technique
_ to evaluate the asymptotic behavior of the contour integration around
F the branch cut is completely analogous to that of Lamb's problem[l],
[12] where the method of steepest descents is applied. The asymptotic

approximation of the interface wave due to the n-th multiple including

the primary reflection, PnL is given, as expected, by

(1), (z) (1),5(1), n-1 2
o - 81 B )(I\) B °0°1p2505|-i
Tz (()2),862) (L)
fulyalztz,) + 1r/c,]
X e 270" 70 g (2.56)

(2) , o(2),2,,(1)¢ o(1)%\n
(Ao +Bo )‘AH -BH )

where L is the horizontal distance the interface wave propagates along
the subbottom for each subbottom interaction(cf. Fig. 2.15). As r be-

comes large so does nL, and PnL algebraically decays proportional to |
l/rz. Al though Eq. (2.56) is the leading order term of the asymptotic ' 1
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expansion of PnL , it is of order 1l/w. Thus, this is all we can expect
from the Langer reflection coefficients.
The total subbottom interface wave contribution is given by the

sum of the branch cut contributions of Pn as their S.D.P.'s cross the

L
branch point. Again, 1ike the saddle point contribution, Eq. (2.56) is
valid for any inhomogeneous ‘layer as long as it satisfies the conditions

necessary for the Langer reflection coefficient.

2.4 Limitation of the Asymptotic Expansion of Pn

The total reflected fields at two different values of z + z, are
computed from the geoacoustic model shown in Fig. 2.7, The results are
compared to the ones generated by a numerical Hankel transform method
L12J(cf. Fig. 2.16). They show good agreement except at a few rigions
of horizontal ranges where the asymptotic solutions to the primary and
mul tiple reflections break down at the critical incidence and caustics.

As discussed in Secs., 2.3.1 and 2.3.2, in order for the method of
steepest descents to be valid, F(p) must be a smooth well-behaved func-
tion. Although F(p) can be made sufficiently smooth at most incident
angles by separating out the complex phase term, the rapid change in
ampl itude and phase near critical incidence is still a problem. Since

v'n(p) at critical incidence becomes large, the correction term N be-

comes unstable. This is also true for reflections at very small graz-
ing angles. The second problem is that N blows up as b"(ps) ap-
proaches zero. This is the condition corresponding to caustic formation. -.__!.;1
In the complex p-plane, the first problem is due to the fact that
the saddle point is located too close to the branch point, l/c2 or 1/co.
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For the second problem, the S.D.P. passing through the saddle point is
no longer a straight line near the saddle point, but branches out with
x/3 angles (cf. Fig. 2.17). Thus the expansion along the straight
line(cf. Fig. 2.12), which resulted in Eq. (2.41), is no longer valid at

the caustic saddle point and breaks down.

For either case another alternative must be taken in crder to
evaluate Pn for such regions of p. A uniform asymptotic expansion of
the inteyral across the critical points [3] may be applied for these
cases, but it is very difficult to obtain any physical interpretation
from the results which involve special functions. Thus, the argument
for obtaining analytic solutions for these special conditions becomes
very weak, Therefore, our choiée here is to numerically integrate
along a slightly modi fied S.D.P. as shown in Fig. 2.18 under these cir-

cuis tances .
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Chapter 3: Geoacoustic Models and Reflected Fields

In Sec. 2.1 the total plane wave reflection coefficients for our
geoacoustic models were derived using the Langer Uniform Asymptotic
Approximation (L.U.A.A.). Then, using the Langer reflection coeffi-
cients, we derived reflected fields due to a time harmonic point source
in Sec. 2.3. We shall next derive the phase integrals for the profile
shapes of interest.

After examining the full analytic solutions for the reflected
fields, particularly the asymptotic behavior of the fields at long
ranges, we can estimate important parameters to study various cases. We
shall then apply the above results to study energy partitioning of

eiyenrays for the ocean bottom geoacoustic models.

3.1. Profile Types in the Sediment Layer

The formulae for the reflection coefficient given by Eq. (2.20)
and the asymptotic expansion of the reflected fields given by Eq. (2.42)
through (2.59) are all based on an ocean bottom geoacoustic model con-
sisting of a layer with a slowly varying sound velocity (of any shape)
above a homogeneous infinite halfspace. Therefore, the only parameter
which must be found is the phase integral n defined by Eq. (2.5). This
quantity may be calculated numerically, but it is instructive to derive,
where possible, an analytic expression in order to obtain full analytic
solutions for the reflected fields and to investigate the physical ef-

fects of the geoacoustic parameters upon the reflected fields. We shall
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limit our cases to three different profile shapes for which analytic

expressions for the phase integral and its derivatives are obtainable.

a) 1/cf-Linear Profile

For this case

1

=a, z*+b (3.1)
czl(z) 1 1

where ay and b1 are arbitrary parameters. This profile type is one
of the most commonly used for modeling slowly varying inhomogeneous
media because exﬁct analytic solutions for the field are available in
the form of Airy functions. Also, the Langer reflection coefficients
become exact for this profile type as E(z) in (2.3) vanishes every-
where., Even though one might argue that the shape of this profile does
not necessarily represent actual profile shapes observed in real ocean
bottom sediments, it will be shown in Sec. 3.2.3 that this is a good
approximation to the correct ones as long as the layer thickness and
souna velocity gradient are small.

The analytic expressions, for the first, second, third and four th-
-order derivatives of eta with respect to p for this profile type are

given below:

3
n =—3a—Q (3.2)
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1 2
T - E o
aznl ) 2 2p2c1(z) -1
d p? alc?(z) Q
3
d’n ,
1, 2P (3 - 2p (z)]
dp”  a,c;(z)Q
d4rl1 . b
apt acfiz’
where Q = [llcf(z) - p2]1/2.

b) cl-l inear Profile

For this case

Cl(Z) =

a22+b2

where a, and b, are arbitrary parameters.

This is another common profile shape, a straight 1ine between two

fixed endpoints,

this profile are given by

L) ='a'E [CI(Z)Q - ]n('_pc_(ﬂ'_]

d“2_
a—E-

<y (z)Q
a,p
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Formulae for the phase integral and derivatives for

+ ¢y (z)Q

°
(3.3)
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(3.4) -
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(3.5) '
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£ -1
d—-r-‘zz- = - (3,¢,(z)Q p?) (3.10)
p
f_"§=-_1(_r(1-_§) (3.11)
dp Heyfzip EZ p
&y
2 3 4 2 4
.- (2% - p2¢? + p) (3.12)
d—p4 azcl(z)paa5
c) cf-L,inear Profile
For this case
cf(z) zagz ¢ b3 (3.13)

where a; ana b3 are arbi trary parameters.

This rather unusual linear expression for the sound velocity is
added to our analysis in order to investigate more realistic gecacoustic
models derived from measurements[3]. The sound velocity in the bottom
may be given as a function of one-way travel time t from direct
measurements and is often expressed in terms of polynomials in t. From
these expres- sions, Hamil ton has studied sonobuoy bottom reflection
data ana statis- tically obtained a form for the sound velocity as a
function of depth which he fittea with third-order polynomials[2]. As

seen in Fig, D.1, the major characteristic of the "Hamilton profile" is

that the sound velocity gradient near the ocean bottom is larger than

that of the deep- er portion of the profile - this is just the opposite L ° %
of the behavior for the case of the llcf(z)-linear profile. o ]
9
It has been found by the author that the "Hamil ton profile" may be 3
: 1
L. &
1
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well approximated by a simple 1inear expression as introduced here,
From the given coefficients of a third-order polynomial in t, one may
obtain a; and by in (3.13) from the formula provided in Appendix D.
Their agreement is quite good even in the deep portion of the profile
where the maximum error is expected (See Fig. D.1l). The validity of

this rather simple approximation is also discussed in Appendix D.
The analytic expressions for n and its derivatives may be easily

obtained and are given by

Jd(2)?
n3 = - ;——pz— (3.14)
g 612 2, 2
a——p = -?3——p— [Zp + CI(Z)] (3.15)
&n
3 3 2.2
=-——4-——[2-pc (z)] (3.16)
d__pz asp cl(z)Q 1
n
3 3 2 4.2 8
= - —————p [12p° - 3p'c{(z) - -?—J (3.17)
d_? a3c1(z)p Q 1 ¢, (2)
°4"3 3 2,02, 8,222, 2
;—-—4 = - m LZOQ +19C1(Z)Q ~4p +7p Cl(Z)Q ] (3.18)
P 3¢l

Similarly, a profile whose form is cM-'linear with M= 2,4 orb

also provides simple analytic expression for the phase integral. The

general rule is that the greater M is, the greater the gradient near the

3

ocean bottom. These profiles may be used instead of the c”-1linear

form, depending on the size of the curvature of the profile shape to be
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modeled. We choose to study the c3-linear profile because it demon-
strates the best agreement with the measurements reported by Hamil ton.
In order to study the effects due solely to the profile shapes, we
fix the ena points of the profiles so that the difference in character-
istic acoustic impedance across each interface remains the same. Once
the enapoints of the sound velocity in the layer are fixed, the coef-
ficients of the linear equation for each profile shape are automatically

fi xed.

3.2 Important geoacoustic parameters in modeling

In this sectibn, applying the mathematical results obtained in
Chapter 2 and profile shapes chosen for the lTayer in Sec. 3.1, we shall
discuss the effects of geoacoustic parameters on the reflected fields
ana thus establish guidelines to choose appropriate examples of geo-
acoustic models. Since we have obtained closed forms for the reflected
fields based on the geoacoustic models, we can discuss the direct para-
metric dependence of our solutions for some 1imiting cases.

The major quantities which are primarily responsible for the field
amplitudes for a given geoacoustic model are b"'l/z (ps) and Rn(ps) [cf.
Eq. (2.42)]. The first one controls the geometric spreading and the
other the amplitude of the plane wave corresponding to the particular
saddle point, Since we have fixed the endpoints of the layer profile in
modelingy, the boundary conditions at both of the interfaces remain the
same. This leads to the condition that the asymptotic behavior of the
ampl ituge of the reflection coefficient Rn is independent of the pro-

file shape as derived in Eqs. (2.31) and (2.32).
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Therefore, " is the only quantity which sensitively responds to
the change in profile shape for fixed boundary conditions. In order to
investigate how related geoacoustic parameters affect this quantity, we
shall next examine the analytic expression of g" for a limiting case,
though its behavior is valid for a large portion of horizontal ranges

where the incident angle approaches grazing.

3.2.1 Geometric Spreading Near Grazing Incidence

In this subsection we shall demonstrate from the profile shapes we
have chosen that #" strongly depends on the sound velocity gradient at
the top of the layer and becomes independent of the profile shape near
grazing incidence.

When an eigenray of a primary or multiple reflection enters the
ocean bottom near grazing, it turns within the layer at relatively shal-

low depth. The associated phase integral is calculated by integrating

from z = z, toz = 0. Let us consider az;()/dp2 for the 1/c§-'linear pro-
file case
g = - >3 * 2n 5 (3.19)
Cr Y dp
0'0 2 =0

where the first term corresponds to the water path and the second term
corresponds to the layer-path given by Eq. (3.4), After replacing p and
Q with cl(z )/c05a1 and ¢; (z )/sinal respectively, we rewrite Eq. (3.4) as

d%n 2cosla,-1
._% .- < c2m) . 1 (3.20)
d %Y, 4 1" %
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where ay is the grazing angle in the layer at z = 0. We next differ-

entiate both sides of Eq. (3.1) with respect to z to obtain

2 10) (3.21)
alclwi =-d < '
Iz z2=0.

After we substitute Eq. (3.21) in Eq. (3.20), we obtain

2 2
Tl ©1(0) (2¢05%a,-1) (3.22)
T2 wmr -1 '

P 20 ——d-z—sinm1

Since we are considering the case of small grazing incidence, the small
angle approximations to the leading order terms may replace the trigo-

nometric functions and Eq. (3.22) becomes

2
- a-qm— (3.23)

ap
20 —g 9,

The minus sign is due to the fact that positive z is defined to be up-
ward in the water column, and therefore the velocity gradient in the

layer is negative.

2

Interestingly, the expressions derived for dzn/dp for the

cl-linear and c13-11near profiles become identical to the one given by
£q. (3.23) when small angle approximations are made. Since we have

fixed cl(O) (and cl(h)) for all profile shapes, the only variable is the
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sound velocity gradient at the ocean bottom for the rays which
completely turn within the layer.

The effect of this is expected to be more critical when the sum of
the source and receiver heights is sufficiently small so that the first
term on the right hand side of Eq. (3.19) does not dominate 4". 1In
order to quantitatively determine the condition where the water-path
term does not dominate g", we shall again consider the case of small
grazing incidence and assume that Co = cl(D) at the bottom. Then,

we obtain from Eq. (3.19) that

2+ 25 < 2n aPcy/(dc (0)/dz)

where a is the grazing angle of the n-th multiple in the water column.

1

For a gradient of 1 s™°, the right hand side of Eq. (3.24)

becomes less than 100 m for the primary reflection(n = 1). As the order
of the multiple reflection increases, i.e. n in Eq. (3.19) increases
ana/or the sound velocity gradient at the bottom decreases, the layer-
-path contribution increases. Therefore, a larger value for (z + zo)

satisfies Eq. (3.24).

3.2.2 Geoacoustic Models with Large Layer Thickness

We have just learned that geometric spreading, particularly at
long ranges, is strongly affected by the sound velocity gradient at the
bottom. In order to obtain a wide range in the sound velocity gradients
anong the three profile shapes, while keeping the same boundary condi-

tions at both interfaces, one must have a relatively large layer thick-
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ness and sound velocity gradient.

For the given endpoints, the sound velocity gradients of the l/ci

ana ci-linear profiles are given in terms of the endpoint-sound ve-

locities, cl(O) and cl(H) by

3
dcl(O) cl(O)

1/¢%-1inear: [ey2 - ¢;%(0)] (3.25)

2 -

dz 2H

de;(0) ¢(0)
dz 3H

ci-linear: [cf(H) - cf(O)]. (3.26)

respectively, where H is the layer thickness.
We next define a "reference gradient” g by the gradient of the
cl-linear profile since it is constant throughout the layer. Then,

cl(H) is given by

cl(H) = Hg + cl(O). (3.27)

After the above expression for cl(H) is substituted, Eqs. (3.25) and
(3.26) become

dc,(0) c¢,(0)
1 1 {} - cf(O)[Hg + cl(o)]'{} (3.28)
dz A
dc,(0)  c;2(0) 3 3
= (Hg + ¢,(0)]7 - cj(0)), (3.29) .
dz 3H . i
L__.ﬁﬂ_‘_1
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respectively. Now it can be easily shown for both expressions for the

gragient dc; (0)/dz that

dcl(O)
—5— >0 as g » 0 for any H, (3.30)
dcl(O)

and —&— *9 as H » 0. (3.31)

Therefore, if g and/or H become small, the variations in the velocity
gradient at the bottom and thus the entire profile shapes become close
to one another.

Fig. 3.1 shows the three profile shapes between fixed end points

1

in the layer whose thickness is 500 mwith g = 1.5 s, For this ex-

ample the gradients of l/c"f, ¢ and c‘z’-linear profiles at the bottom

1 1

are 0.8333 s'l, 1.5 s° and 2.375 s~ respectively. However, if the

layer thickness is reduced to 50 m, they become 1.395 s'l, 1.5 s'1
anua 1.576 s‘l, respectively, for the same reference gradient at the
bottom. When g is small, the differences in sound velocity gradient
become sraller even though the layer thickness is increased to 500 m
(cf. Fig. 3.2).

One interesting non-dimensional parameter of our geoacoustic model
is the layer thickness divided by the average wavelength, denoted by
H/<A1>. A large layer thickness not only provides substantial varia-
tions among profile shapes between the endpoints but also sets a large
value for this parameter for reasonably high frequencies., The other

extreme case, namely the layer thickness being comparable to or even

smaller than the wavelength, is also of interest and we shall examine
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geoacoustic models whose layer thicknesses are varied according to the

size of this quantity in Sec. 3.3.

3.2.3 Geoacoustic models

While we shall use a large layer in order to study the effects of
di fferent profile shapes, we shall model a small layer with a single
profile type since the exact profile shape does not matter much for
fixed endpoint velocities and a small layer thickness. We shall choose
the 1/c§-1inear profile for thin layer cases since for this profile
the Langer reflection coefficients become exact.

Based on the modeling considerations discussed in this section, we
propose studying the following geoacoustic models, where we also assume
a one percent sound velocity drop at the top of the layer, a phenomenon

often encounterea in deep ocean bottom experimental datall]:

1

Model I: Thin layer model with a 5-m layer and a 2 s " -gradient

Model II: Small layer models with a 50-m layer and

1

a) a 0.5 s " -gradient,

b) al.b s'l-gradient.

Model II1: Thick layer model with a 500-m layer,

1

a .5 s "-reference gradient, and

a) a 1/c2-1inear profile,

b) a c3-11near profile.
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o

Model IV: Thick layer model with a 500-m layer,
alb s'l-reference gradient, and
a)a 1/c2-11'near profile

b) a c3-1inear profile

The quantity H/<A1> is 0.1, 1 and 10 for Models I, II, and III and IV,

respectively.

3.3 Reflected Fields for The Geoacoustic Models

We still have to fix two more parameters in our examples, namely the
source frequency and the source-receiver geometry. Regarding the source
frequency, relatively high frequencies must be used in order for the
asymptotic expansion to be valid. A frequency of 220 Hz is used for all
of the examples since it is the frequency that has been used in the
fiela experiments by Frisk[1].

The value of the sum of the source and receiver heights off the

ocean bottom Z is defined as
z = Z + 200

This has also been varied in actual field experiments, the typical range
being 125-250 meters from the ocean bottom. For the reflected fields
this is a single parameter., If the direct field due to the water path
is included in the total fields, the source and receiver heights must be
given separately.

The reflectea fields are grouped into three different ray types; the
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specular reflection, primary reflection and multiple reflections. A
schematic of these rays is shown in Fig. 3.3. The total reflected field
is evaluated from the coherent sum of all of the above fields.

In order to obtain the reflected fields due to the multiples the
infinite series of Sommerfeld integrals for the multiples my be trun-

cated at the m-th term so that the following condition holds:

m (e8]
Z Ry = z Ry = RygraLs O < psj < ps0 (3.31)
j=0 j=0

where Pso is the saddle point for the specularly reflected field and
Ps; is the saddle point for the j-th multiple. This is a more rigor-
ous truncation criterion than truncating the terms whose contributions
are below a certain level after each of the multiple fields is computed
because it guarantees that the total reflection coefficient in the
Sommer feld integral is well approximated before the integration is eval-

uatea.

3.3.1 Model I: Geoacoustic Model with Thin Layer

A geoacoustic model with a 5-meter thick layer and a sound veloci-
ty graaient of 2 s'l(cf. Fig. 3.4) was used to generate the reflected
fielas for Z = 100 m as shown in Fig. 3.5. Since the layer thickness is
ssaller than the average wavelength in the layer(6.77 m), pure ray theo-
ry should not work well, Even though the use of ray theory may not be
valid in interpreting the reflected fieids, the ray theory based expan-
sion of the total reflection coefficient is still valid and we can still

evaluate each of the Sommerfeld integrals for the Rn's.
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Fig. 3.3 Typical reflecting rays in the gecacoustic model.
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MODEL 1
| Co = 1500 m/s
F 1485 m/s \ Po =1g/cm3
OCE AN
1 R BOT TOM
5"“ Py = 1.5 g/cm3
f SUBBOT TOM

495 mre | €27 1600 m/s
P2 = 1.8 g/Cm3

Fig. 3.4 A thin layer-model with a 5-m layer.
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Performing this analysis, we see that the primary reflection domi -
nates the total reflected field up to a horizontal range of 5000 m.
Fig. 3.6 shows a ray diagram of the primary reflections., There is no
caustic generated because of the thin layer. The specular and multiple
reflections are of about equal level, though both are substantially
siialler than the primary reflection for most ranges. As the incident
angle approaches grazing, the field amplitudes of al]l of the reflection
types become almost equal. Since the differences in ray path between
the different arrivals are very small for the chosen source-receiver
yeomtry, i.e. the water column is twenty times thicker than the bottom
layer, their corresponding saddle points are very close to each other at
any given range. This is confirmed by observing that the specular and
mul tiple returns exhibit minima which appear at the same incident angle

in their reflection coefficient plots (similar plots are shown in Figs.

2.5 ana 2.6), at cl dsel_y located ranges near 800 m. A ray diagram of
the primary reflections is shown in Fig. 3.6.

We conclude from the above observations that the effect of the
thin layer, even with a rather strong sound velocity gradient (such as 2
s'1 in our example), is weak and that the reflected field is dominated
by the subbottom with which the primary reflection has the strongest

interaction except at ranges associated with incidence very close to

grazing.
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3.3.2 Model II: Small layer thickness with variable source-
-receiver heights

The Models IIa and IIb, corresponding to two different sound ve-

locity gradients, 0.5 s'1 andl.5 s'l, respectively(cf. Fig. 3.7),
are considered for two different values of source-receiver height. The

reflected fields at Z = 50 mand Z = 100 m for the first model are shown

b in Fig. 3.8, while the fields for the second model for these values of Z
are also shown in Fig. 3.9.

t;i-f For both models highly oscillatory amplitude variation is seen at
' close ranges (r < 500m). This is due to the strong interaction between

the specular and primary reflections. As the specular reflection ap-

proaches its minimum amplitude, the effect of the mul tiples becomes

more pronounced and alters the curve of the total reflected field which
is now dominated by the primary reflection,

Beyona a range of about 2000 m, the primary reflection decays with
range because the amplitude of the reflection coefficient for the prima-
ry reflection starts decaying as it approaches graz.ing incidence(cf.
Fig. 3.1(b) as well as the geometric spreading increases. The specular
reflection maintains a steady level due to a sharp increase in the re-
flection coefficient amplitude (cf. Fig., 3.10a) countering the loss due

to geometric spreading. In both models the primary reflection dominates

for most ranges at Z = 100 m.

However, at Z = 50 m in both models, the specular reflections

become dominant over the primary reflection at mid-ranges (2500-3500

-
m). This is due to the fact that when Z is reduced to 50 m, the water- . ]
1
-path contribution to the geometric spreading becomes less, and thus the )
-
-
1
0
-9




MODEL Il a,b
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1485 m/s Po = 1g/cm?3
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Fig. 3.7
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A small layer models with a 50-m layer, and (a) g = 0.5
s', (b)g=155s"
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contribution of the layer-path to the total geometric spreading is more
emphasized.

| The sharp peak in the primary reflection seen at range 1500 m in

Fig. 3.8b (Model Ila) indicates caustic formation near the ocean bot-

tom. However, as Z increases to 100 m, it disappears. This disappear-

? ance of the caustic is due to the presence of the subbottom and there
exists a caustic cut-off between these depths., Section 4.2 will treat

] this problem in more detail.

h Due to the small velocity gradient in Model Ila the field contrib-

ution from the multiples is small even at long ranges (r > 3000 m).

1

However, when the velocity gradient is increased to 1.5 s™°, as shown

in Model I11b, their contribution becomes one of the major ones even at

relatively close ranges for small Z (cf. Fig. 3.9b). Therefore, a large
souna velocity gradient at the bottom and a small Z contribute to a

larger mul tiple field amplitude.

3.3.3 Model IIl: Thick Layer with Small Gradient

Two different profile shapes are consider in this model: 1/c2

ana c3-linear(cf. Fig. 3.11). As discussed in Sec. 3.2.2 and shown in

Fig. 3.2, a smal) reference gradient(.5 s'lin this model ) creates only

suall gifferences in the profile shapes. However, even a small differ- .

ence in profile shape can make large di fferences in the geometric

spreaainy at long ranges. The large layer thickness makes it possible

aaden

to form a caustic extending into the water colum(cf. Fig. 3.12). In - &

this case the total reflected fields are characterized by the fields

beyond the caustics formed by the primary and mul tiples(cf. Fig. 3.13),

I

as
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MODEL Il a,b

Py
r

" 1485 m/s
i \ Co= 1500 m/s

Po=1g/cm?3

¢c' =0.5¢"
pP1=15g/cm?3

C2 22400 m/s
P2 = 1.8 g/cm3

(@) The 1/cé-linear and (b) the c°-1inear profiles.
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Fig. 3.11 A thick layer model with a 500-m layer where g = 0.5 s-1.
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while the overall field amplitudes of all reflection types are very
similar otherwise.

These strongly interfering primary and mul tiple refiection ampli-

tudes, which result from caustic formations, are due to mul ti-saddle
point contributions(cf. Sec. 2.3.2). The difference in locations of the
h appearance of these features are very clear in both profile types.

- However, the patterns of the amplitudes of both primary and multiples

are almost identical in both profile types. The similarity in the field

anpl itudes near the caustic will be discussed in Sec. 4.3.

3.3.4 Mdel IV: Thick Layer with Large Gradient

The souna velocity gradient at the top of the layer varies strong-
ly in this model, given that the boundary conditions at both of the
interfaces are the same(cf. Fig. 3.14). As shown in Figs. 3.15 and
3.16, the caustic formations of the primary reflections are quite dif-
ferent in the 1/c2 and c3-linear layer cases. In each case the
inter ference patterns due to multi-saddle points characterize the be-
haviors of the primary and multiple reflections{cf. Fig. 3.17). In the

1/c2-]inear case shown in Fig. 3.15 the caustic has two branches and a

cusp at the point where they meet. The interference of the primary

reflections only takes place within the ranges surrounded by the caustic ' e

3

branches. In the case of the c¢”-linear profile, there is only one

caustic branch which extends into the water column up to the caustic

cut-off point (cf. Sec. 4.2). For large layer thickness, the caustic Y .
branch can extend to large distances above the ocean bottom., Thus the
inter ference of the primary reflections can extend to longer horizontal 1
-0
-
104
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MODEL IV q,Db

h ¢o = 1500 m/s
1485 m/s Po=1g/cm3

= 1.5 s!
=1,59/cm?3

/ 2400 m/s
P2=1.8 g/cm?

2235 m

Fig. 3.14 A thick layer model with a 500-m layer where g = 1.5 s-1,
(a) The 1/cZ-11inear profile and (b) the c3-linear profile.
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ranges until the subbottom reflection terminates this behavior(cf. Fig.
3.16).

Comparing the reflected fields generated from both cases with dif-
ferent sound velocity gradients, we observe that the total field from
Model IVb(cf. Fig. 3.17b), which has a larger gradient at the bottom
than Model IVa(cf. Fig. 3.17a), shows 1ower amplitude levels beyond the
primary caustic range. One may expect from our discussion in Sec., 3.2.1
that the primary reflection for a geocacoustic model with a larger sound
velocity gradient should have a larger amplitude. However, for our
typical source-receiver geometries, i.e. Z > 100 m, the condition given
by Eq. (3.24) is violated and the water-path contribution to the total
geome tric spreading becomes substantially larger than that of the layer
as the eigenray approaches grazing incidence.

Since ao[cf. Eq. (3.24)] of the primary eigenrays reaching long
ranges in Model 1Vb are smaller, an even greater water-path contribution
is addea to the total geometric spreading. As a result, the primary
reflection from Model IVb has less amplitude than that of Model IVa.
Furthermore, since the primary reflections are the dominant contributor
ana control the overall level of the total reflected fields for both
cases, the total reflected field from Model IVb shows less relative
ampl itude even with the greater velocity gradient near the bottom.

Mul tiples, on the other hand, effectively reduce geometric spread-
ing due to both the water-path and the layer-path, thus multiple con-
tribution becomes larger from the geoacoustic model with a larger sound
velocity gradient at ﬂ1e bottom. The multiple reflections also form

similar interference patterns to the primary reflections and are respon-
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sible for the highly oscillatory patterns in the total reflected fields

abserved at long ranges beyond the primary caustic ranges for both mod-

els.
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Chapter 4: Analytic Studies on Caustics

Due to the limitations of the method of steepest descents, the
analytic evaluation of the reflected fields near caustics was excluded
in Chapter 2. However, understanding the parametric dependence of the
caustic shapes and the strength of the field near the caustics can help

recover geoacoustic properties of the ocean bottom(2]. In this chapter

we shall focus on this subject and discuss the caustic behavior, pri-
marily in a qualitative manner, for the proposed sound velocity profile

shapes.

4.1 The caustic equations for the proposed geoacoustic models
Brekhovskikhl'.l]’.r derived the equations of caustics formed in a
homogeneous upper half-space overlying an inhomogeneous hal fspace for

the n®-Tlinear and c-Tinear profiles where the sound velocity is con-

tinuous across the boundary. This section is an extension of his work
to derive a caustic equation for the case of the c3-1inear profile . ‘!} »
which provides a more realistic profile shape., The equations of causg

tics for all three cases are derived for the n-th multiples and there-

fore they are more general forms than those of Brekhovskikh. In this : ) ‘.w.

section we shall neglect the effect of the subbottom on caustic formation

* The results given in Ref, 1, Eqs. (46,21) through (46.23) appear R
to have errors. Our corrected formulas are given in Sec. 4.1.2
of this chapter.
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and will reserve a discussion of that subject for Sec. 4.2.

The cases treated in this chapter are limited to the geoacoustic
models where there is no discontinuity in sound velocity at the ocean
bottom interface. Even though we have chosen less comprehensive geo-
acoustic models than those we have used earlier in order to make the
algebra easier, we may still learn a great deal about the caustics from
these special cases for the various inhomogeneities in the layer.

4.1.1 The caustic equations for the c3

-linear profile

The conaitions for the caustic in the water column are given by
Eqs. (2.40) and (2.44) when Ps is such that the left hand side of Eq.
(2.44) vanishes, After Egs. (3.15) and (3.16) are evaluated at the
water-bottom interface and substituted in Eqs. (2.40) and (2.44) respec-

tively, we obtain

Pc 2n 2.2/3,1/2,, -2 , .2/3
- ;a (z + ZO) + TC + a3pc (1 - pcb3 ) (2pc + b3 ) =0 (4.1)

zZ* 2
0 6n 2/3 2.2/3,-1/2
- - 7;(2.p§b3 11 - p2d/3) -0 (8.2)
o'0  ?3Pc

where Pc is the horizontal slowness which satisfies the above equa-
tions, az andg b3 are the coefficients in Eq. (3.13), and re is the

caustic range. If the sound velocity in the lower half-space is given by

c3(z) =azz* cg (4.3)
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where <o is the sound velocity in the upper half-space, Eqs. (4.1) and
{4.2) may be reduced to

Pe 2n 1/2 2

re = -Y—O- (z + zo) - %TDZ (1 - pcco) (2p 0) (4.4)

zZ+2
—y2 ¢ (2 - pRdin - V2 Lo (4.5)

00 3Pc
_ Rewriting Yo and Pc in terms of the grazing angle a in the me-
dium containing the incident wave, we then obtain
:Zc3 2
= (2 + zo)cota - tana ( + 1) (4.6)
C0S a
3
6nc 2
0 sin"a 2
24252 - 5= =7 (2 - cos%) (4.7)
0 43 cos'a
Solving for COSzu from Eq. (4.7), we obtain
3
3nc 4a
c052a= 0 x| (3 ¢ (1-—%(2* zo))l/zl (4.8)
a3(z + zo) + finc0 3nc

Since ay < 0, there is no limit on z ¢+ z, and the caustic branch extends
to infinity in the upper halfspace. Since cosza <1, we must choose
the minus sign for the square root for any a3(z + zo).

Therefore, the location of the caustic may be obtained for a given

z ana z by substituting
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3
3nc 4a
a = Arccos 0 3[3- (1-—%(2* zo))l/z:ll/2 (4.9)
a3(z + zo) + 6nc0 3nc0

into Eq. (4.6) in order to obtain the caustic range ree Fig. 4.1a shows
a plot of rovs.z2 for a source height of 50 m, Co = 1500 s, n = 1
(primary reflection) and ay = -6.75 x 106 mz/s3.

4.1.2 The caustic equation for the l/cz-linear profile
The caustic equation in the water colum for the 1/c2-h'near pro-
file may be similarly derived and it is expressed by the following

equations:

2
2a, (z + z,)
a = Arcsin{g [1+ (1. 20 0,1/241/2 (4.10a)
re= —422 sinza COSza (4.10b)
4%

where a is the grazing angle of the ray in the water column and ay is
the coefficient of z in Eq. (3.1). For a given z and 2,5, one may
obtain a from Eq. (4.10a), and substitute it in Eq. (4.10b) to obtain
the caustic range e+ Since « has two values for a given z, z, and

aj, then r_. does also. This is a very important characteristic of

c
the caustic shape generated by the llcz-linear profile whose caustic
branches never extend to positive infinity in the upper halfspace.

Instead they form a cusped caustic known as a butterfly caustic(cf.

Figs. 4.2a,b).
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Fig. 4.1a,b A ray diagram of the primary reflections for the c3-
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At the cusp o has a single value satisfying the condition,

Zal(z + zo) cg/n =1 (4.11a)

Thus, we dbtain from Eq. (4.10)

33/2n
a= 1[/6, rczz—z (4.11b)
a.c
i0
Equation (4.11) indicates that the grazing angle for the cusp is inde-
pendent of z + 5 and a, and is always 30 degrees. The regions of
a which correcpond to separate branches of the caustic in the water

column are given as
on the branch 2-3: ay < ax 1/6
on the branch 1-2: /6 ¢ a < %

where ay o = Arcsin 1 5 (1- 2a,z,c3/m1/2) (4.12)

4,1.3 The caustic equation for the c-linear profile
The derivation of the caustic equation for the c-linear profile is

straightforwara and the result is given by

2t 7 .2 2 (4.13)
5 = Bﬁc_oc :

— .— 1

]

}
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where a, is the coefficient of z in Eq. (3.7).

4.1.4 Caustic equations for small grazing angles

Fig. 4.3 shows the curves of the caustics in the water colum for

the three different profile shapes given that all of their sound veloc-

ity gradients at the ocean bottom interface are fixed at 1 sec'1 (cf.

Fig. 4.4). MNotice that all of them have very similar curves (consider-

ing the upper branch of the 1/c2-1inear profile) especially near the

ocean bottom. This is due to the fact that all of the caustic equations

become identical as the grazing angles become very small,

angle approximations are substituted in the pairs of caustic equations,

Eqs. (4.6) ana (4.7), and Eqs. (4.10a,b), they can be reduced to (Eq.

(4.13) is exact):

for the 1/c2-linear profile: z+ 2z,

3

for the c“-linear profile: zZ+ 1z

where a is approximated by

(z+ zp)e' 15

a2 [ e,
dc; (0)
with ¢’ =T;
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Fig. 4.4
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The sound velocity profiles of the 1/c2, ¢ and c3-1inear
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For the same graaient at the ocean bottom (z = 0), 3 and a3 may be

given in terms of a, as

ZaZ/C%,

a

aj -3a2/c%.

If a) ana a5 are substituted in Eqs. (4.14) and (4.15) respec-
tively, they may be identically reduced to Eq. (4.13) for smal) grazing
angles associated with caustics formed near the ocean bottom. Since
small a corresponds to small c'z0 [cf. Eq. (4.16)], we can conclude that
the caustic curves near the ocean bottom(z is also small) are controlled
by the gradient of the profile near the bottom, not the overall shape of
the profile. This observation is particularly important when the sub-
bottom in present since the caustics in the water column are formed only

near the bottom for this case, which is discussed in the next section.

4.2 The effects of the subbottom interface on the caustic
in the water column

In Section 4.1 the inhomogeneous medium was treated as an infinite
hal fspace for which caustics are formed by purely refracted rays. How-
ever, the presence of a subbottom reflector in the geoacoustic models
under consideration serves to eliminate rays with certain ranges of ho-
rizontal slowness p from caustic formation. Brekhovskikh has delineated
the regions of slowness for different branches of the caustics for the

nz-linear and c-linear cases. The presence of the subbottom simply
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sets the limits on the regions of slowness forming the varicus caustic
branches, but does not create additional branches.

For the case of the 1/c2-Hnear profile, the caustic branches will
be eliminated in numerical order as labeled in Fig. 4.2a as the rays
forming the caustic start reflecting off the subbottom interface. For
the other two profile shapes, which share similar caustic curves with
only two branches, the caustic branch extending into the water column
away from the bottom will be eliminated. The order of disappearance of
the caustic branch is again indicated by the numbers labeled along the
caustic branches in Fig. 4.la.

Thus, the branch of the caustic extending into the water column is
cut off as the last caustic-forming refracting ray interacts with the
subbottom. The location of the caustic cut-off may be easily obtained
by substituting the p of the last turning ray into the ray equation, say
Eq. (4.1) for c3-1inear profile, to obtain Fes and then substituting
re into the equation of the caustic to find the receiver depth z for a
given zg. Figs. 4.5a,b show ray trace diagrams with and without the
subbottom fur the c-linear profile in the lower half.space. Fig. 4.5a

clearly shows the caustic cut-off in the water column where the rays

start radiating into a wedge-shaped region without crossing each other.

4.3 The fields near caustics

As discussed in Chapter 2, the asymptotic solution derived in that
chapter is not valid for the fields near the caustics where g¢" in Egs.
(2.41) ana (2.42) becomes very small and vanishes completely at the

caustics. The fields in these regions can be evaluated by numerical
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integration methoas. Analytic solutions to such fields also exist with
some limitations. Brekhovskikh's caustic correction to ray theory [3]
is only valid for the fields very near the caustics. A uniform asymp-
totic solution such as the one by White and Pedersen[4] continuously
valid across the caustic involves a great deal of mathematics, and it is
rather difficult to obtain any physical interpretation of the fields.

In this section we shall emphasize the physical interpretation of
the various caustics resulting from the different profile types discuss-
ed in Sec. 3.1. The shapes and locations of caustics in the water col-
urn have been discussed in Secs. 4.1 and 4.2, Qur main interests in
this section are to evaluate analytically the strength of the caustic
ana geometric decay of the fields near the caustic as one moves away
from the caustic with horizontal range. Therefore, analytic solutions
derived by Brekhovskikh which are only valid near the caustic serve our
neeas, ana we shall discuss the above problems in terms of the three
profile types having the same sound velocity gradients at the bottom(cf.
Fig. 4.4).

We have modified Brekhovsk ikh's analytic solution to include the
Langer reflection coefficient Rn(p) to the fields near the first order
caustic (i.e. dg/dp = d2p/dp® = 0 but d3p/dp° £ 0 at p = p.)
to obtain

-1/3
) R (p.)| Sop.)
p - 28 8T/ 1/2 nc -~ A(q) (4.7
Y0 dp
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where Ai is the Airy function whose variable q is given by

-1/3

Chp,)
: (r-ry) (4.18)

dp

q = sm[bm(pc)] 21/3u

The value of Pc varies depending on the profile shapes and the
source-receiver orientations. Thus, the coefficient of the Airy func-
tion in EQ. (4.17) involves many parameters to be examined. However, as
giscussed in Sec. 4.1.4, if the caustic fields of interest are relative-
ly near the bottom, the variations in Per ¥ and Rn are very small since
the profile shapes at the top of the layer are very similar, Therefore,

the most sensitive quantity is|g" |-1/3

which also plays an important
role as the weighting factor in the argument of the Airy function, which
dominates the variation with range of the field amplitude near the caus-
tic,

In order to evaluate the relative strength of the caustic and the
decay with horizontal range, it is useful to overlay the Airy function

nl tipl iea by |a3¢/ ap®|-1/3

evaluated at the Pe corresponding to each
profile shape, and plotted against the horizontal distance away from the
caustic. For two different values of the source and receiver heights, z
M 250 m ana 50 m, Figs. 4.6a,b show two sets of curves of the men-
tionea quantity for the three different profile types based on the geo-
acoustic models shown in Fig. 4.3. The frequency of the harmonic point
source is 220 Hz.

For zy = 50 m, at z = 0 m al) three caustic curves are very

similar (cf. Fig. 4.3) and the quantities of | #*| "/ 3ai in Fig. 4.6b
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also show close similarlities among the three profile types. On the
other hand, at z = 200 m ‘b""'lNAi for the ¢ and cS-linear profiles
similarly have greater amplitudes and spatial oscillations than atz =0
m, but the behavior of the 1/c2-1inear profile remains almost the same
at both of the depths. Even though the caustic curves in Fig. 4.3 show
well separated traces near z = 200 m, one can observe a similarity bet-

ween the ¢ ana c3

-linear profiles in terms of the radius of curvature
while the curve for the l/cz-linear profile yields a sharper turning.
The difference in the field strength can be physically explained
by ray interpretations as follows. Let us consider rays forming two
types of caustics in a homogeneous medium. (ne of them is formed along
a curve of a small radius of the curvature and the other is formed along
a large radius of the curvature as shown in Figs. 4.7a and 4.7b, respec-
tively. As seen in both figures, the rays forming the caustic with the
larger radius of the curvature are more densely interacting with each

other near the caustic. This results in larger and highly oscillatory

interference field amplitude patterns near the caustic as observed in

Fig. 4.6a for the c and c3

-linear profiles.

We can conclude from the above observations that when the caustic
curves are similar, the associated fields near such caustics are also
similar and they are more directly affected by the curvatures of the

caustic curves than by the shapes of the profiles.
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Chapter 5: Analysis of Experimental Data

We have examined various geoacoustic models using an asymptotic
expansion method based on the Langer reflection coefficients in Chapter
i 3. In this chapter we shall examine two sets of experimental data ob-
tained from field experiments and estimate the geocacoustic properties of
the ocean bottom from these data using the asymptotic expansion method.
| After finding geoacoustic models such that the resulting total fields
' agree with the measurements satisfactorily, we shall demonstrate the
energy partitioning of the eigenrays with horizontal range, so that the
- physical mechanisms causing the real fields may be understood. We shall
also discuss the effect of source/receiver geometry on the determination

of geoacoustic models.

Data Set 1: Icelandic Basin
Field measurements were taken in the Icelandic Basin (59 31.0'N,
. 17 20.8'W) by Frisk and his co-workers[l1]. The total acoustic pressure
fiela due to a 220-Hz harmonic point source towed at an elevation of 157
m above the ocean bottom(cf. Fig. 1.2) was measured by a receiver moored

at 54.6 m above the bottom. It has been found by Frisk[1](with

ol o,

modi fications by the author) that the geoacoustic model shown in Fig.

5.1 seems to provide the best synthetic fields which match with these

measurements. Both synthetic and real data are shown in Fig. 5.2.
We next generate reflected fields based on this geoacoustic model

and group them into three ray types: specular, primary and multiple
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Fig. 5.1 Geoacoustic model for the Icelandic Basin
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reflections. As shown in Fig. 5.3, the primary reflection clearly domi-
nates the total reflected field (excluding the direct field) for ranges
up to 5 km even though the sound velocity gradient is the largest we
have examined so far and one would expect a greater contribution from
the multiples(cf. Sec. 3.2.1). This is due to the fact that the water
column occupies a large portion of the total ray path even for the mul-
tiples(cf. Fig. 5.4), and the condition given by Eq. (3.24) is violated
(the R. H. S. of Eq. (3.24) is about 30 m, while (z + zo) is 211.6 m).

Therefore, al thouch the geometric spreading due to the layer-path
is relatively small for the steep sound velocity gradient at the bottom,
this does not contribute much to reducing the total geometric spreading
of the multiples. Given an insignificant contribution to the field
amplitude from the steep sound velocity gradient at the bottom, the
primary reflection which has the maximum reflection coefficient ampli-
tuge after critical incidence dominates the total reflected field.

Basea on these observations we can also conclude that the sound
velocity at the top of the layer and the gradient in the layer, which
most affect the behavior of the primary reflection, particularly its
geometric spreaaing, are mainly responsible for the nature of the total
reflected field at these ranges. The geoacoustic model shown in Fig.
5.1 is the result of using such modeling criteria to determine the sound
velocity at the top of the layer and the gradient in the layer to im-
prove the agreement between the measurement and synthetic fields.

The fact that in this case geometric spreading is heavily depen-
dent upon the water-path and not the layer-path makes the identification

of geoacoustic models somewhat more difficult, particularly the shape of
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the profile associated with the sound velocity gradient at the bottom.

This is not the same as saying that matching the synthetic fields to the

measurements is di fficult. e
As an example, Fig. 5.5 shows two sets of the total field: one | :

from the 1/c2-1inear profile and the other from the c3-Hnear pro- ’ ‘

file for fixed endpoints of the sound velocity in the layer. It is ' ™

evigent that all of the total fields generated from the geoacoustic |

models with different profile types, including the one shown in Fig.

5.2, have good agreement with the measurements. P e
Therefore, when the source and receiver are placed at relatively

high elevation above the bottom so that the water-path dominates the

total geometric spreading, the total fields measured at these receiver ' e
locations are insensitive to the shape of the bottom layer profile, and
thus the identification of this property of the bottom structure becomes

very difficult. In the next example, we shall demonstrate that the LT

effect of the profile shape is indeed significant when the source and

receiver heights are reduced.

Data Set 2: Hatteras Abyssal Plain

We next examine experimental data collected in the Hatteras

Abyssal Plain (34 00.0'N, 67 00.0'W) with the same experimental
configuration as in the previ- ous example except that the source and

receiver heights are now 180 and 2.7 meters, respectively. The

estimatea geoacoustic model for this region is shown in Fig. 5.6. where
the average water sound velocity was used from the model by Frisk[2].
The measurement of the total field is shown along with the synthetic

field based on our geoacoustic model in L. 9
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Fig. 5.7. Due to the comparable size of the source plus receiver
heights and the sediment layer thickness(c.f. Ray trace diagram in Fig.
5.8), this example demonstrates a sensitive dependence on the shape of
the sound velocity profile in the layer despite the small reference
sound velocity gradient(dc/dz =1 s'1 as opposed to a value of nearly

3 s'1

for the previous example).
Except at ranges near r = 2000 m, both real and synthetic fields
agree well. This agreement is especially good at very long ranges as

the result of the c3

-linear profile being used for the sound velocity
in the layer. If one instead takes the profile in the layer to be
l/cz-h‘near for the same fixed endpoints, the resulting synthetic
field shows a very different behavior, as seen in Fig. 5.9. We note
that the large peak at and just beyond the caustic has become narrower.
As shown in Fig. 5.10, this is due to there being a narrower horizontal
range band in which the primary reflections can interfere with each
other,

The profile-dependent differences in the reflected field ampli-
tudes seen at long range can be analyzed by comparing their grouped
reflected fields, shown in Figs. 5.11 and 5.12 for the c3 and l/cz-
~-linear profile shapes, respectively. Except near the caustic ranges,
the gross variations of the field amplitudes of each reflection are
almost the same. However, the total reflected field amplitude behaves
somewhat differently in each case with respect to that of the primary
reflection, This indicates that for each reflection there are more

sensitive variations in phase rather than in amplitude due to the

varjation in profile shape.
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Fig. 5.6 Geoac~'~ ‘c model for the Hatteras Abyssal Plain.

140

1o




? 60 -
: -55
. o -60

" ]

Q 651

=

o

S 70

<

[80]

E -75 -

< )

D g0+
-85 1
-90

Fig. 5.7

EXPERIMENT

ASYMPTOTIC METHOD

1000

———r— 7" - =

T T —
2000 3000 4000

RANGE (M)

A comparison between experiment and asymptotic method using

the geoacoustic model shown in Fig. 5.6.

141

LY




DISTANCE FROM BOTTOM (M)

DISTANCE FROM BOTTOM (M)

Fig. 5.8

-140

-40 w

\§ .‘/ //

L7
KA

VUL
"o".’ﬂ?y (M
N &

n'.
ﬂ%?"&@ /e Quab
7

B
R

47

o

\
oL
YA
o)
S
P ya 4 -0 3
60 ~ y ; N
RORy p: A
7 /
; )
T &
+ o
3 (4
X s
i Y 4
ll'l
b
)

Y -
12000 3000 4000

/]
ety
,',"l,',' "" /
'ﬁ"b" 'AWP’
NNty e
i
", Y gg?’
\J
? /

(J

[
R Lf
]
///,
q& / NF //, /

/ ¢
7
7,

0 1000 2000 3000 4000
RANGE (M)

Ray diagrams of the (a) primary and (b) second mul tiple
reflections using the geoacoustic model shown in Fig. 5.6,

142

-

|

|-

NN




., Wy

ASYMPTOTIC METHOD

WWWM

EXPERIMENT

/

-50 P
-55 -
;
T -60-
=l
(TN}
% -65 -
=
a
S 704
< ]
(18}
E; ‘757
< ]
D
oc -804
-85 -
-90 4——r
1000

RANGE (M)

——
3000

.
4000

Fig. 5.9 A comparison between experiment and asymptotic method using

~.th

-linear profile.

143




2 -140'1
2
O
=
(@]
D .40
P
@)
T
w
Q
<Zf 60
5
(@]
160 +——— T T —
0 1000 2000 3000 4000
RANGE (M)
:
3
= (]
o "',"" /
Q0 404 ," "' "
: iy
£ N
PR ALOAN AN ,/"l y
& A \'*. ", ¥/
g 601 ?i§§§>}7j
\%\V
\
160 >

3000 4000
RANGE (M)

Fig. 5.10 Ray diagrams of the (a) primary and (b) second multiple
reflections using the 1/c2-linear profile.
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When the total reflected fields interfere destructively with the direct
field at long ranges(r > 2800 m) as shown in Fig. 5.13, one sees a rapid
amplitude decay with horizontal range in the measurement. For the

1/c2-h'near profile, the total reflected field interferes construc-

tively with the direct field at these ranges as shown in Fig. 5.14. One
sees here that the change in profile shape makes the greatest contribu-
tion to the phase variations, and not to the amplitude, which can result
in a large difference in the total field as the reflected fields inter-

act with the direct field.

Summary:

In both exampies, the primary reflection is found to be the major
contributor to the total reflected field. In the first case, the sound
velocity graaient at the bottom is large but the value of (z + zo) is
also large. In the second case, the sound velocity gradient at the bot-
tom is small but the value of (z + zo) is relatively small. Due to
the large water-path geometric spreading in the first case and the small
souna velocity graaient at the bottom in the second case, the multiple
contributions become small, Also, the primary reflection coefficient
ampl ituce remains large up to the range of interest so that the specular
reflection coefficient amplitude stays 1ower for all ranges in both
cases(cf, Fiy., 3.10 for example). Therefore, in general, a large value
for (z + zo) enhances the contribution from the primary reflection at

lony ranges.

It is also found that the major effect of the shape of the profile

in the bottom layer is on the phase variation of the reflected field
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which leads to the characteristic gross features of the total field
ampl itude as the direct water field is coherently added to the reflected
field. However, this effect would be negligible if the water-path domi-
natea the total geometric spreading as the source and receiver are

placed at high elevations above the ocean bottom.

Ceoloyical data near the experimental sites:

In order to relate the physical features of the geoacoustic models
used in this chapter to the actual geological properties of the exper-
imental sites, seismic and core sample data from the Deep Sea Drilling

Project(D.S.D.P.) were searched. The major objective was to identify

the subbottom reflector in our geoacoustic models from the D.S.D.P. data.

The seismic reflection data at 60-320 Hz taken near the D.S.D.P.
sites 116 ana 117, which are the closest locations to the experimental
site, inaicate the first reflector cepth varying from 150 to 275 meters
even though their physical locations are very close to each other[3].

It is therefore inappropriate to extrapolate the depth of the first re-
flector, namely the subbottom interface, from these data which were col-
lectea at Teast 2.5 degrees in latitude away from the actual site. The
presence of a subbottom reflector at 38 meters below the waterbottom
interface at the experimental site was confirmed by 3.5 kHz normal inci-
dence records taken at the site., Also yellow mud, and yellow mud and
shells were collected from 19-foot and 25-foot core samples,
respectively, at two different locations within the area[l].

In the case of the Hatteras Abyssal Plain the depth of the sub-

bottom interface agrees reasonably well with that of the first acoustic
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A

horizon AT from the drilling site 387 on the western Bermuda Rise[4].
Hor izon AT correlates approximately with the top of a seq’u’ence of mid-
dle Eocene siliceous turbidites (1ithologic sub-unit 3A) which underlies
upper Eocene radiolarian mud (Unit 2). Other acoustic reflectors were
also well defined and their geological correlations could be determined
from the core samples with reasonable confidence. The subbottom depths
resulting from seismic reflection and refraction profiling by Emery et.
al .[5] and Houtz and Ewingl6] near the experimental site were 130 meters
ana 215 meters, respectively, and consistent with Frisk's estimate of
160 meters. Therefore, it suggests that the subbottom inter face may
correspond to the first acoustic horizon AT observed near the drilling
site., The information on geological properties of deep ocean sediments

is often not available; thus performing the bottom acoustic experiments

near well Togyed D.S.D.P. sites may increase confidence in geoacoustic

model ing and testing of theoretical results.

ke ferences:
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L2l Frisk, G. V., Doutt, J. A. and Hays, E. E., "Bottom interaction of
low-frequency acoustic signals at small grazing angles in the deep
ocean,” J. Acoust. Soc. Am. 69, 84-94 (1981).

(31 Davies, T. A, ed., Initial Reports of the Deep Sea Drilling
Project, Vol. XII, National Science Foundation, Washington, D. C.,
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Vol. XLIII, National Science Foundation, Washingtonm, D, C., 1979.
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Chapter 6: Contributions and Related problems

In this final chapter we shall summarize the results obtained in
Chapters 2 through 5 and discuss the contributions made here to the
field of ocean bottom acoustic interaction. We shall also discuss other
related problems raised during this research and possible techniques to

solve them.

6.1 Contributions

Most of the mathematical discussion in this thesis was devoted to
the analytic evaluation of ocean bottom reflected acoustic fields given
in the form of the Sommerfeld integral. Within the formulation we used
realistic geoacoustic models and examined the sensitivity of the fields
yenerated to the geoacoustic parameters.

The asymptotic method for approximating the Sommerfeld integral
was gerived in Chapter 2. The total reflected fields were given by a
series of asymptotic solutions to the fields associated with eigenrays.
Since the reflection coefficients as weight factors in the integrand
were derived analytically based on realistic gecacoustic models using
Langer uniform asymptotic approximation, the resulting asymptotic solu-
tions were also analytic expressions for these geoacoustic models.

The accuracy of the method was confirmed by comparison with numer-
ical Hankel transform results except in regions where critical incidence
ana caustic formation take place. We have also derived the asymptotic

expressions based on the Langer reflection coefficients for the inter-
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face wave propagating along the subbottom interface corresponding to the
n-th aultiple reflection,

In Chapter 3, a new canonical analytic expression for the sound
velocity profile was introduced. We demonstrated in Appendix D that a

sound velocity ¢ expressed by c3

-linear in depth provides a very simi-
lar profile shape to the one observed from field measurements. Using
the analytic expression for the phase integral for this profile type, we
obtained complete analytic solutions to the reflected fields based on
this geoacoustic profile shape as well as for the cases of the 1/c2
and c-linear types.

We then applied the above results to examine several types of
geoacoustic models varying in layer thickness, sound velocity gradient,
profile shapes and source-receiver geometry and demonstrated complex
features of energy partitioning of eigenrays with horizontal range.
Because of the accuracy of the plane wave reflection coefficients we
gerived, our method should be valid even for geoacoustic models with a
thin layer(i.e. thickness less than a wavelength) where ray theory is
believed not to be valid.

The effect of the sound velocity gradient at the bottom on the
geometric spreading for near-grazing incidence was qualitatively dis-
cussed, The conditions under which the layer-path of the n-th multiple
dominates the total geometric spreading were also derived for this
case. It was proved that the differences in profile shape were minimal
for a small gradient and/or a small layer thickness for fixed endpoints
of the sound velocity in the layer. However, in the case of a large

layer thickness and small gradient, slight differences in profile shape
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caused relatively large differences in caustic position though the field
ampl itudes were very similar including the fields near the caustics.

In Chapter 4, we derived the caustic equations for the 1/c2 and
c3-1inear profiles. We found that the cusp of the caustic from the
1/c2-11near profile always corresponds to a grazing angle of »/6 inde-
pendent of the source-receiver geometry and the sound velocity gradi-
ent. We also demonstrated that the leading term of the asymptotic ex-
pansion for the fields near the caustic is directly influenced by the
amount of curvature in the caustic curve.

Two sets of field measurements were discussed in Chapter 5. The
energy partitioning of the eigenrays was analyzed and it was found that
the primary reflection dominated the total reflected field at most
ranges for both cases. We also discussed the accuracy obtained in mod-
el ing the ocean bottom relative to the geometric orientation of the
source and receiver for given bottom structures.

while the density and sound velocity discontinuities at the bound-
ary interfaces determined the gross features of the amplitudes of the
reflected fields, sensitive ray-phase variation due to the shape of the
profile in the layer became important as the direct field was coherently
addea to the total reflected field. However, when the source-receiver
heights were large so that the variation of the water-path with respect
to that of the layer-path became large, the total field amplitude became
insensitive to the pfofi]e shape. The discussion on this issue will be
continuea in the next section.

The group of acoustic properties of the bottom which affect the

retlected fields given in this thesis is clearly not complete. We have
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Just started to deal with mathematical models representing the basic

i acoustic properties of a horizontally stratified bottom that one may
L find in the real world. Without even complicating these models there

are still many problems remaining. A survey of such problems will be

aiscussed next.

6.2 Related problems

Addi tional aspects of acoustic bottom interaction will be dis-

cussed in this section. Some of these are experimental subjects, others

are purely mathematical.

6.2.1 Suggested deployment depths of the receiver system
and an iterative inverse scheme

We extend here the discussion given in Chapter 5 and propose a
simple scheme to recover the acoustic properties of the ocean bottom
using a forward modeling technique such as the one developed in this
thesis. We have concluded in Chaps. 3 and 5 that in order to model the
bottom accurately, including the profile shape, one should minimize the
sum of the source and receiver heights to enhance the layer-path over
the water-path,

This indicates that it might be desirable to make a preliminary
estimate of the layer thickness by means of standard vertical profiling
(such as measuring the travel time of a pulsed signal propagating normal
to the ocean bottom), and then to deploy the system of receivers accord-
ing to the estimated Tayer thickness for oblique incidence work. One

receiver should be deployed at the depth where the source-receiver sum
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does not exceed the layer thickness. The other should probably be
located at a higher elevation off the bottom. We realize from the dis-
cussion in Sec. 3.2.1 that the source-receiver sum should be determined
from the souna velocity gradient at the bottom, not from the layer
thickness. However, since this quantity is not known at this stage of
the experiment, estimating the Tower end of the sum of the source and
receiver heights from the layer thickness is the best one can be expect-
ea to do.

We have seen that the fields measured at long ranges by the top
receiver are dominated by the interaction between the refracting rays of

primary reflection and the direct water-path field (the other types of

@
<

reflections are suppressed by their greater geometric spreading). This
inaicates that it may be possible to match the sum of the direct and
primary reflection to the gross feature of the real data at long ranges
by usiny an even simpler geoacoustic model with a monotonically increas-
iny sound velocity profile (of the c-linear type for example) in the
lower hal fspace without the subbottom interface. As both models (with
ana wi thout the subbottom) show reasonable agreement, we are obviously
measuring most sensitively the sound velocity and sound velocity gradi-
ent at the water bottom interface. The success Frisk had in obtaining a
yeoacous tic model using the parabolic equation method[1] can be explain-
ea by these same arguments, since specular reflection was not explicitly
incluced in those calculations and the effect of the subbottom (they
modeled it as a soft boundary) was negligible at long ranges.

By matching the fields at both receivers at short ranges with the

specular reflection included (but not multiples), one fixes the subbot-
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tom interface. Finally, by matching the fields at long ranges at the
lower receiver with multiples now included, one can "fine-tune" the pro-
file shape as well as the sound velocity discontinuity at both inter-
faces.

Of course, the actual search for geoacoustic models which match
the data is not quite as straightforward as the procedure described
here, which is based on purely mathematical models. It may also prove
impossible to suspend the source very close to the bottom to see layers

of small thickness.

6.2.2 Application of the Langer reflection coefficient
to a numerical method

It was noted that the evaluation of the plane wave reflection co-
efficient via the propagator-matrix method involves some difficulties,
both in selecting a step size for the profile and in computing time[2].
As shown in Fig. 2.2, the accuracy of the Langer reflection coefficient
is quite gooa and as long as the geoacoustic model is of the type con-
sidered in this thesis, the (total or partial) Langer reflection coeffi-
cient could be substituted in the Sommerfeld integral to be evaluated
numerically by the Hankel transform method[3,4]. This scheme should
also be a good aiternative to the asymptotic method introduced here when
it fails at critical incidence and caustics where more accurate fields

are desirable,
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6.2.3 A partial expansion of the total Langer reflection
coefficient

ke expandea the total Langer reflection coefficient before the
evaluation of the Sommerfeld integral. This approach was suitable to
distinguish one ray-type field contribution from the others. However,
it is not necessarily the most efficient method for computing the total
reflectea fielas. Specifically, the multiple contributions involve
long, tedious summations, and we are often only interested in the total
contribution of the multiples, but not in the separate multiple reflec-
tions.

Therefore, the following expansion is suggested instead:

(2) (2 (2) o (2)
Rip) = A?Z) - B?ZI * ?;?DIYO?% 7 Arz) - B':2)
(1) (1),,,.(2) (2)
(A + B~ (A -B8,°")
X [1- 0 0 H H

0
(6.1)

where the first and second terms represent specular and primary reflec-
tions respectively, as calculated in Eq. (2.27), but the last term is a
composite expression of the rest of the multiples.

The first two terms may be substituted in the Sommerfeld integral
to be evaluated asymptotically; these provide ray-type field solutions.
However, the last term involves singularities for which the normal mode
representation may prove ideal, The evaluation of the total contribu-

tion due to the multiples would then involve locating residues in the
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complex p-plane. This procedure, though it may involve numerical diffi-
culties, would probably be more efficient than the one used in this the-
sis, particularly when a large number of multiples contribute to the

field.

6.2.4 Limiting cases of interference head waves[2]

In the discussion of interface waves in Sec. 2.3.3, we argued that
the fields associated with those waves propagating along the water-bot-
tom interface are due to the saddle point contributions of the multi-
ptes. This is true whether the sound velocity at the top of the lTayer
is less than or greater than that of the water column,

However, if the sound velocity profile in the layer approaches a
constant ana the layer medium becomes identically homogeneous, the phys-
ical characteristics of the interface waves become completely different
depenaing on the sound velocity di fference at the water-bottom inter-
face. Unly when c; <, (0), do they become the classical head wave
dssociatea with a branch cut contribution[5].

It is also of some interest to show analytically that the pole-
-type singularities from the total Langer reflection coefficient become
the branch cut due to the branch point at l/cl(O) as cl(z) approach-

es cl(O) for all z.
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Appendix A:  Accuracy of The Langer uniform asymptotic approximation

Quantitative error analysis of the Langer uniform asymptotic
approximation is discussed in this appendix. We have discussed that
E(z)G(z) vanishes asymptotically in Chapter 2. The exact expression for

E(z) is given by
Ez) L (A1)
b4

where Y= 0'1/2 q.l/é (A.2)

Thus E(z) may be further reduced to

E) = - =52 3, L (A.3)
36 4Q Q
The condition for the Langer solutions to be valid is
Elz) «1 (A.4)
wQ

where the denominator is given by the second term in (2.3).

Substituting (A.3) in (A.4), we obtain

-2 5 -2 .30 "
w [-—n " ¢ - RSS! (A.5)
P

36

162

——— ey



When n is very large, i.e. when z is away from a turning point z, s0 that
z
n = f Q(Z‘)dZ' > 1,
Zt
the above condition may be further reduced to
] (1}
u-2[3—01- - %] << 1 (A.6)

4Q° 2

This is nothing but the error criterion for the WKBJ method[l1]. (A.5)
and (A.6) are valid only when Q £ 0 and n # 0, and Q' and Q" are not

large, i.e, when z is away from z_ in a slowly varying medium.

t
In order for the Langer solutions given by Eq. (2.7) to be valid

anywhere, we must show that\Vnever becomes zero even at the turning

point although one might expect such condition by substituting n = 0 in

Eq. (A.2). Let us assume near the turning point that

Q° = az as 230 (A.7)

where z, = 0 is assumed for convenience and a is a constant gradient.

Then,
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Hence becomes
2,1/6
Ve ()

which is constant at the turning point, thus E(z) vanishes.
Therefore, is non-zero anywhere.

The Langer uniform asymptotic approximation is equivalent to the
WKBJ approximation with an Airy function correction for depths near the
turning point. However, when the WKBJ method is applied, it is
necessary to determine where to switch from the WKBJ solution to the
Airy function solution in order to obtain solutions across the turning
depth, The greatest advantage of L.U.A.A. is that it provides a general
closed form solution valid anywhere without requiring the determination
of this boundary and continuously switches one solution type to the
other,

It is also important to note that when Qz(z) is linear
everywhere, \yis constant and E(z) vanishes entirely, and therefore the

L.U.A.A. reduces to the exact solution of (2.1).

References:
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Sc1entlsts and Engineers, McGraw-Hill, New York, 1978,

{2] Langer, R. E., "Asymptotic solutions of a differential equation in

the theory of microwave propagation,” Commun., Pure Appl. Math. 3,
427-438 (1950).
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Appendix B: The Modified Method of Steepest Descents for :
]
the Sommerfela Integral with Langer Reflection Coefficients e
The method of steepest descents(M.S.D.) is an expansion technique B -
to evaluate asymptotically an integral of the form, -44;.—4-—4
® _ ]
I= f F(p) e""“p) dp; w>m (8.1) : 4
o ~ e .4
172 -1
where F = Vnp o
- -~~.—<~~-‘<
with V=R e-2lunu o
n" n ]
where R, is a partial Langer reflection coefficient defined by Eq. i
. &
(2.30) and , is a layer-phase defined by Eq. (2.39). : i
However, F(p) given by Eq. (2.36) should be written as
e |
F = F(p ,U)
because the modified reflection coefficient Vi is a function of p and
o
w. The reason why we may still apply the basic method of steepest de- T
scerits technique is that Vn behaves as if it were a function of p
alone when its asymptotic behavior for w »c (i.e. the dependence of F
-9
onu is very weak). Although we may treat Vn as a function of p
alone, it is still important to verify if V'n and V"n have the ap-
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propriate behavior as a part of the correction term N in Eq. (2.41) so
that N/w asymptotically vanishes as w approaches infinity[l1]. For the
simplest example, Tet us consider the specularly reflected field P0 o °
-
and compare its correction term N to that of Lamb's problem studied by 1 : ﬁ
Brekhovsk ikh[2]. Since both share the same phase 6, we need only con- '
sider the Rayleiyh plane wave reflection coefficient given by Eq. (2.31) ;‘“'“‘.“—“
and the Langer reflection coefficient Ry in Eq. (2.29). We have al- B '-"
ready observed that Ro in £q. (2.29) may be reduced to Eq. (2.31) when
the asymptotic approximations of the Fock functions are substituted, but - °
! " 1
this is not the case for their derivatives. We shall examine the asymp-
totic behavior of V'n and V"n, and justify the expansion necessary
for the method of steepest descents. e
[N A ‘*
First, before we consider the Langer reflection coefficient V, Lo
(= Ry), i.e. the plane wave reflection coefficient for specular re- :
flection, we shall review the leading order behavior of its asymptotic "”"';"‘"4
approximation which identically becomes a local plane wave reflection ‘
coefficient at the ocean bottom interface given by
- 9
P1% - *o% 1
 J ) (B.2) ]
r + 00 1
°1%0 * foYo ]
whose first derivative with respect to p is given by = &
1
{
2 pnp P Q Y |
R = L 2.y (8.3) e
+ ) Q .
(DIYO 9000 YO 0
®

A
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where the subscript r indicates that this is the Rayleigh reflection
coefficient.

Now we differentiate V, with respect to p and obtain

' 0~% * (2] 4 pl2) )2 :
&
;:. which has the leading order asymptotic behavior
2 p,pqP v, Q n'Qnyy
v, - 01 (2.0, 00 (B.5)

‘DIYO + 9000)2 Qo YO 3Pu

The last term within the parenthesis is introduced in addition to the
result from Eq. (B.3). Interestingly, when the sound velocity profile
in the layer has the form l/cz-linear, the first and third terms ex-

actly cancel out and Eq. (B.5) becomes

2 Doplp Qo
vy - .

- 5 (8.6)
loyvg * oG o-
This could be significantly different from the value given by Eq.
(B.3) because the terms within the parenthesis in Eq. (B.3) tend to
cancel each other when ¢y and c1(0) have similar values, and the
ai fference can become a fraction of the order of each term. In any case

Eq. (B.6) is still independent of w and behaves well in the correction

term N,
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v U We shall next consider the second derivative of Vos

" (2)"a(2) _ (2) ()" ' (2) (2)

' YQ- AO B 0B0 )_;QZ(AO +B0 ) (5.7}
o v 2 {2) (2) ’
$ 0 Aé"‘) . 8f? 0 A+ 8
;’.L
- ) [}

' where A(()Z), B(()Z), Aéz) and Béz) are given by Eqs. (2.21-22), (2.51-52),
E respectively. Also Aéz)" and Bgz) " are given by
) ‘ A(§2) " = _191[( 12) H‘l) (2)( )

L oo
- " 2p ' 0(1),(2)
+ (‘10\)0 - % vo) W (vo)] (B8.8)
(2)" ' ' 2, wy yl(1),(2)
BO = -poLZ Sovovo + Sovo H v0Y0 W (v )
" (1), (2)
+[S -SOOOJN (v) (B.9)

Again, after substituting the asymptotic approximations of the Fock

functions in Eq. (B.7), we obtain

. .9
. ]
o - 2pge1P [ . 5tl) Q  211PQ '
o "7 " 33 1% Poto’ D73 T 2
170 * Pl PCo'o i
—
2 . 1
, To1vp
- ZUT} ‘ipoYo + (1 - i)Dloo + )J (8.10)
%
- ]
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where there is a term u which leads to the violation of the criterion
imposed for the asymptotic expansion given by Eq. (2.42). In an analo-
gous manner, one can show that asymptotically Vn' is independent of u
while V " depends onw for n > 0.

The direct cause of this problem is due to the mathematical prop-

erty of the Airy functions A which satisfy the Airy equation

£aix)
-:;2——=x A(x) (B.11)
where x contains the term dependent on w. As the terms in Vn contain-
inyg the Airy functions are differentiated twice, these quantities appear
in the asymptotic form of Vn without being canceled out. Thus, unfor-
tunately, a agirect application of the M, S. D. fails at the inclusion of
the second derivative of the Langer reflection coefficient.

However, we know that vn is a very slowly varying function of p
ana it woulad not make much physical sense to expect a large value from
the second derivative of L with respect to p compared to the first
gerivative. We also know that in practice, the major source of limit-
ation of the M. D. S. is due to a large value of V'n which is the only
place where V“n could be appreciably large (ex. the Langer reflection
coefficient at critical incidence). All of the above suggests that the
basic approach of the M. S. D. is still valid. We, therefore, set V"n
to zero, which is equivalent to limiting the Taylor expansion of F in

Eq. (2.41) to somewhat Tower order by rewriting the truncated series as
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We note that F" in Eq. (2.48) is the coefficient of (p - Ps )2 in the

above expansion,

Re ference:

L1l

(2]

P
F(p)sF(ps)+F'(p)(p~p)*—[V(——3- )
Yo P Y
1/2 -1 I 2
+y Ps Yo (210 t—7 -4—-2')](P - Ps) (B.12)
Yo P

Bencer, C. M. and Orszag, S. A., Advanced Mathematical Methods for
Scientists and Engineers, McGraw-HiIT, New R

Brekhovsk ikh, L. M., Waves in Layered Media, 2nd ed., Academic
Press, New York 1980
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Appendix C: Asymptotic approximation of Fock functions

Asymptotic expansions of Fock functions are derived in this appen-

dix as follow:

W02 Gy ai(eu) 5 1 Bi ()

(w31 2et /64 10.(2) () (C.1a,b)

~ (2v/3wx )Y/ 2?1 (X - 1/4)

_ Va2 rilx - 2/8)

(C.2a,b)

dAi (-v) 3 ¢dBi(-v)
d(-v) d(-v)

(1.2 )

v _Fin/6,(1),(2)
- e Hyy o' 0 (x) (C.3a,b)
3172 2/3

(23 )Y 2e2 (X = 3u/4)

/8 12 wi(x - n/4) (C.4a,b)

where v = (’2'3 x)2/3
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The regions of validity of the argument x are

-7 ¢ arg X < 2r for the first kind, (1)
-2r ¢carg X < = for the second kind, (2)
Reference:
r‘“' Abramowitz, M. and Stegun, I. A., Handook of Mathematical Functions,

Natl. Bur. Stand. Appl. Math, Ser. 55, Washington, D. C., 1964, Eqs.
(10.4.23), (10.4.24), (10.4.28), (10.4.29), (9.2.3) and (9.2.4).
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Appendix D: Approximation of Hamilton's Profile

Sound velocity profiling in ocean bottom sediments from sonobuoy
aata is given in terms of the one-way travel time t of a pulse signal
penetrating through the bottom structures. It has been found from
rmeasurements that the depth z may be expressed by the third order

polynomial in t as[1]
z = At +Bt%/2 + ct¥/3, (.1)
By differentiating both sides, we obtain sound velocity v in t given by
v=dz/at = A + Bt + Ct2, (0.2)

Unlike the case where z is a quadratic function of t[2], it is not
possible to eliminate t from the above equations to obtain v as a
function of z. Hamilton does provide an expression for sound velocity
as a function of depth which is the result of a regression of points
yeneratea by the above equations for many values of t and is expressed
by thira orger polynomials[1]. However, it is not in a form for which
the phase integral and ray equations(travel time, intensity, etc.) can
be computed analytically,

In this appendix we shall introduce an approximate method to
obtain a simple analytic depth dependent expression for the sound

velocity from which these analytical expressions can be obtained
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easily[3]. The results of this simple velocity function are accurate
enough to model ocean bottom sound velocity structure based on the mea-
surements,

We first propose the following quadratic function in z versus

souna velocity V to the third power:

v3 = at BZ*t yzz (D.3)

The above expression for V has been chosen because the shape of V
is similar to that of Hamilton's profile. We have also assumed 3 un-

known coefficients, a, 8 and y, to be consistent with the 3 parameters

yiven in (D.1) ana (D.2) though it will be shown later that the last
term on the right hand side may be dropped without sacrificing much ac-
curacy. As a result, the ray equations and the phase integral can be
expressed in simple analytic forms as given in Sec. 3.1.

After we substitute z given by (D.1) in (D.3) and retain terms
through tz, (D.3) becomes

Vsataht+ (8B/2+ ya)e, (D.4)

Since A, B anaC are on the order of unity[1] and t is typically less
than 1 sec, anda, 8 and y are also on the order of unity (which will be
verifiea shortly), V given by (D.4) is a good approximation to Eq. (D.3).

We next cube both sides of (D.2) and compare the coefficients of

each order of t, ana finally obtain
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: a=Ad
_?' 8 = 3AB
& v = 3(C + 82/2A). e
&
": From the example given by Hamilton of terrigenous sediments whose
F instantaneous velocity in km/sec is given by the form of (D.2) with A = ”“‘.—“—
r 1511, B = 1.041 andC = -0.372(Table III of Ref. 1), we get a = 3.450,
P B=28.989, vy = 1.630. From these numbers it can be easily shown that
h the higher order terms of t which have been neglected in (D.4) are in T e
fact much smaller than the rest.
Furthermore, since z is typically less than 1 km, the zz-term
may be aroppea in (D.3) and we finally obtain . e
Vsat ez (D.5)
e
Wen z is .1 km, V computed from (D.5) has less than 0.29%, error
comparea to Hamilton's formula, and even at z = 1 km where the maximum
error is expected, it has less than 1% error. Hamilton's profile and e
(D.5) are plotted in Fig. D.1.
-9 _
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